what's the temperature 32°F in degrees Celsius
Answer:
0 degrees Celsius
Explanation:
Ice is placed in cool water. What happens to the temperature of the ice and the water?
Answer:
Explanation:
ice absorbs heat from the water. As the water molecules lose energy, they begin to slow down, and consequently to cool. So, it's kind of the opposite of what we might think: when we put ice in water, the ice doesn't give its cold to the water, it takes heat from the water.
Biodiversity decline poses a problem in an ecosystem because
Answer:
Biodiversity decline continues due to a rapidly expanding human population. Habitat is damaged in order to meet growing needs for agriculture, urban development, water and materials. Fish, wildlife and plants are overharvested, despite mounting evidence that many harvesting practices are unsustainable.
How does competition affect population size? Use the terms carrying capacity and limiting factor with your example.
Limiting factors are resources or other factors in the environment that can lower the population growth rate. Competition for resources like food and space cause the growth rate to stop increasing, so the population levels off. This flat upper line on a growth curve is the carrying capacity.
Answer:
they can eat all of the food and kill off the population
Explanation:
if the competition eats all of the food there's no food for the population and they will die off.
A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.400 rev/s. What is its angular velocity (in rev/s) after a 22.0 kg child gets onto it by grabbing its outer edge
Answer:
The final angular velocity is rev/s is 0.293 rev/s.
Explanation:
Given;
mass of the merry-go-round, m₁ = 120 kg
radius of the merry-go-round, r = 1.8 m
initial angular velocity, ω = 0.4 rev/s
mass of the child, m₂ = 22 kg
Apply the principle of conservation angular momentum to determine the final angular velocity;
[tex]I_i= I_f\\\\\frac{1}{2} m_1r^2 \omega _i = \frac{1}{2} m_1r^2 \omega _f + m_2r^2 \omega _f\\\\ \frac{1}{2} m_1r^2 \omega _i =( \frac{1}{2} m_1r^2 + m_2r^2 )\omega _f\\\\\omega _f = \frac{ \frac{1}{2} m_1r^2 \omega _i}{\frac{1}{2} m_1r^2 + m_2r^2} \\\\\omega _f = \frac{ \frac{1}{2} m_1 \omega _i}{\frac{1}{2} m_1 + m_2}\\\\\omega _f = \frac{0.5 \ \times \ 120\ kg \ \times \ 0.4\ rev/s}{0.5 \ \times 120\ kg \ \ + \ \ 22 \ kg} \\\\\omega _f = 0.293 \ rev/s\\[/tex]
Therefore, the final angular velocity is rev/s is 0.293 rev/s.
Which of the following creates the night-and-day cycle experienced on Earth?
A) Orbit of Earth around the Sun
B) Rotation of the Sun
C) Rotation of the Earth
D) Tilt of the axis of Earth
A student wants to determine the speed of sound at an elevation of one mile. To do this the student performs an experiment to determine the resonance frequencies of a tube that is closed at one end. The student takes measurements every day for a week and gets different results on different days. Which of the following experiments would help the student determine the reason for the different results?
a. Repeating the experiment on several 10 degree C days and several 20 degree C days
b. Repeating the experiment using a wider range of frequencies of sound
c. Repeating the original experiment for an additional week
d. Repeating the experiment using a longer tube
Answer:
The correct answer is a
Explanation:
The speed of a sound wave depends on the square root of the modulus of compressibility and the density of the medium.
For the same medium, the speed of sound depends on the temperature of the fora
v = [tex]v_o \ \sqrt{1 + \frac{T}{273} }[/tex]
Therefore, the different results that are obtained are due to changes in temperature. The correct answer is a
since this way it has the values of the speed of sound for each temperature, for which it can compare with the results obtained from the trip.
Place the balloon in a bell jar. If available also add some shaving cream and fresh marshmallows. Ask the instructor for help if you are unfamiliar with this apparatus. The motor of the vacuum pump will remove air from the bell jar when it is turned on. Make a prediction about what you think will happen to the balloon as air is removed from the bell jar.
Answer:
The balloon will collapse
Explanation:
When air is removed from the bell jar, the balloon will collapse if the internal pressure from the balloon does not balance the atmospheric pressure from the surroundings.
A 10 kg medicine ball is thrown at a velocity of 15 km/hr ( m/s) to a 50 kg skater who is
at rest on the ice. The skater catches the ball and subsequently slides with the ball across the
ice.
Complete Question
A 10 kg medicine ball is thrown at a velocity of 15 km/hr ( m/s) to a 50 kg skater who is at rest on the ice. The skater catches the ball and subsequently slides with the ball across the ice.
Calculate the kinetic energy after collision(in joules).
Answer:
[tex]K.E=70.23J[/tex]
Explanation:
From the question we are told that:
Mass of ball [tex]m_b=10kg[/tex]
Speed [tex]V_{b1}=15 km/hr ( m/s)[/tex]
[tex]V_{b1} = 4.1667 m/s[/tex]
[tex]V_{b1} = 4.1667 m/s[/tex]
Mass of Skater [tex]m_s=50kg[/tex]
Generally the equation for conservation of momentum is mathematically given by
[tex]m_sV_{s1}+m_bV_{b1}=(m_s+m_b)V[/tex]
[tex]V=\frac{m_sV_{s1}+m_bV_{b1}}{(m_s+m_b)}[/tex]
[tex]V=\frac {50+10*4.1667}{(50+10)}[/tex]
[tex]V=1.53m/s[/tex]
Generally the equation for Kinetic energy is mathematically given by
[tex]K.E=\frac{1}{2}(m_s+m_b)V^2[/tex]
[tex]K.E=\frac{1}{2}(50+10)(1.53)^2[/tex]
[tex]K.E=70.23J[/tex]
Therefore kinetic energy K.E after collision is given as
[tex]K.E=70.23J[/tex]
PLEASE HELP WITH THIS ONE QUESTION
Which of the following must be true for a current to be induced in a wire passing through a magnetic field?
A) the magnetic field and the direction of motion must be perpendicular
B) the magnetic field and direction of motion must be parallel
Answer:
A) the magnetic field and the direction of motion must be perpendicular
For a current to be induced in a wire passing through a magnetic field, the magnetic field and the direction of motion must be perpendicular. The correct option is A.
What is magnetic field?The magnetic field is the region of space where another object experiences magnetic force and the current is induced in it.
According to the Fleming's right hand rule, the direction of motion, magnetic force and magnetic field are mutually perpendicular.
Thus, the correct option is A.
Learn more about magnetic field.
https://brainly.com/question/14848188
#SPJ2
Science questions!! Please help!!
Post Assessment on Investigating the Immune System
please help!! Please choose the right answers!! Dont guess if you dont know the answers!!
A satellite of mass m is in a circular orbit of radius R2 around a spherical planet of radius R1 made of a material with density ρ. ( R2 is measured from the center of the planet, not its surface.) Use G for the universal gravitational constant.
A) Find the kinetic energy of this satellite, K
Express the satellite's kinetic energy in terms of G, m, π, R1, R2, and ρ.
B) Find U, the gravitational potential energy of the satellite. Take the gravitational potential energy to be zero for an object infinitely far away from the planet.
Express the satellite's gravitational potential energy in terms of G, m, π, R1, R2, and ρ.
C) What is the ratio of the kinetic energy of this satellite to its potential energy?
Express K/U in terms of parameters given in the introduction.
Answer:
a)
get mass of planet:
ρ = M / V
V = 4/3 * R_1^3
M = ρ * V
M = ρ * 4/3 * R_1^3
equate force equations:
F = (GMm) / r^2 // r = R_2
F = ma
a = v^2/R_2
F = m * (v^2/R_2)
m * (v^2/R_2) = (GMm) / R_2^2
plug in and solve v^2:
m * (v^2/R_2) = (G * (ρ * 4/3 * R_1^3) *m) / R_2^2
v^2 = (G * ρ * (4/3) * π * R_1^3) / R_2
put into kinetic energy equation:
K = 1/2 * m * v^2
K = 1/2 * m * (G * ρ * (4/3) * π * R_1^3) / R_2
B)
givens:
U = -(GmM) / R_2
plug in mass of planet:
U = -(G * m * ρ * 4/3 * R_1^3) / R_2
C)
use previous equations and do some algebra:
K/U = (1/2 * m * (G * ρ * (4/3) * π * R_1^3) / R_2) * -(R_2 / (G * m * ρ * 4/3 * R_1^3))
K/U = -1/2
Two creatures sit on a horizontal frictional rotating platform. The platform rotates at a constant speed. The creatures do not slip off as it rotates.
ASSUME:
Red has a mass of 5 kg
Red is 1.5 m from the center
Red has a speed of 9 m/s
Blue has a mass of 25 kg
Blue has a speed of 1.8 m/s
The force of friction on Red is EQUAL to the force of friction on Blue
DETERMINE:
How far from the center is Blue
Answer:
M v^2 / R = centripetal force
For Red: M v^2 / R = 5 * 9^2 / 1.5 = 270
For Blue M v^2 / R = 270 = 25 * 1.8^2 / Rb
So Rb = 25 * 1.8^2 / 270 = .3 m
If you lived on Saturn, which planets would exhibit retrograde motion like that observed for Mars from Earth? (Select all that apply.)
Mercury
Venus
Earth
Mars
Jupiter
Uranus
Neptune
Answer:
earth , mercury , and neptune
Explanation:
pls mark brainless
You are asked to design a spring that will give a 1070 kg satellite a speed of 3.75 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible.
(a) What must the force constant of the spring be?
(b) What distance must the spring be compressed?
Answer:
[tex]380697.33\ \text{N/m}[/tex]
[tex]0.138\ \text{m}[/tex]
Explanation:
m = Mass rocket = 1070 kg
v = Velocity of rocket = 3.75 m/s
a = Acceleration of rocket = 5g
g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
The energy balance of the system is given by
[tex]\dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2\\\Rightarrow kx=\dfrac{mv^2}{x}\\\Rightarrow kx=\dfrac{1070\times 3.75^2}{x}\\\Rightarrow kx=\dfrac{7250}{x}[/tex]
The force balance of the system is given by
[tex]ma=kx\\\Rightarrow m5g=\dfrac{7250}{x}\\\Rightarrow x=\dfrac{7250}{1070\times 5\times 9.81}\\\Rightarrow x=0.138\ \text{m}[/tex]
The distance the spring must be compressed is [tex]0.138\ \text{m}[/tex]
[tex]k=\dfrac{7250}{x^2}\\\Rightarrow k=\dfrac{7250}{0.138^2}\\\Rightarrow k=380697.33\ \text{N/m}[/tex]
The force constant of the spring is [tex]380697.33\ \text{N/m}[/tex].
A record is spinning on a turntable. A record is a uniform disk of mass 1.00 kg and a radius of 0.13 m that spins around an axis through its center. The record is initially spinning at 10 rad/s. Then the motor is turned off and the record slows to a stop with constant angular acceleration. As the record is slowing down it spins through 6.37 revolutions. What is the magnitude of the net torque acting on the record as it slows down
Answer:
T = 0.01 Nm
Explanation:
First, we will calculate the angular acceleration of the disk:
[tex]2\theta\alpha = \omega_f^2-\omega_i^2[/tex]
where,
θ = angular displacement = (6.37 rev)(2π rad/1 rev) = 40.02 rad/s
α = angular acceleration = ?
ωi = initial angular speed = 10 rad/s
ωf = final angular speed = 0 rad/s
Therefore,
[tex](2)(40.02\ rad/s)\alpha = (0\ rad/s)^2-(10\ rad/s)^2[/tex]
α = -1.25 rad/s²
negative sign shows deceleration
α = 1.25 rad/s²
Now, we will calculate the moment of inertia of disk:
[tex]I = \frac{1}{2}mr^2[/tex]
where,
I = Moment of Inertia = ?
m = mass of disk = 1 kg
r = radius of disk = 0.13 m
Therefore,
[tex]I = \frac{1}{2} (1\ kg)(0.13\ m)^2[/tex]
I = 0.00845 kg.m²
Now, the torque can be given as:
T = Iα
T = (0.00845 kg.m²)(1.25 rad/s²)
T = 0.01 Nm
A spring is hung from the ceiling. When a coffee mug is attached to its end, it stretches 2.5 cm before reaching its new equilibrium length. The block is then pulled down slightly and released. What is the frequency of oscillation
Answer:
Explanation:
In equilibrium , weight of mug is equal to restoring force .
mg = kx where m is mass of mug , k is spring constant and x is extension .
k / m = g / x = 9.8 ms⁻² / .025 m
= 392
frequency of oscillation n = [tex]\frac{1}{2\pi}\sqrt{\frac{k}{m} }[/tex]
[tex]n=\frac{1}{2\pi}\sqrt{392 }[/tex]
= 4.46 per second.
An open vertical tube has water in it. a tuning fork vibrates over its mouth. as the water level is lowered in the tube, a resonance is heard when the water level is 180 cm below the top of the tube, and again after the water level is 220 cm below the top of the tube a resonance is heard. what is the frequency of the tuning fork? the speed of sound in air is 343 m/s. answer in units
Answer:
[tex]428.75\ \text{Hz}[/tex]
Explanation:
[tex]\Delta y[/tex] = Change in water level = [tex]220-180=40\ \text{cm}[/tex]
[tex]\lambda[/tex] = Wavelength
[tex]v[/tex] = Speed of sound = 343 m/s
Between the points of resonance there exists [tex]\dfrac{1}{2}\lambda[/tex]
[tex]\dfrac{1}{2}\lambda=\Delta y\\\Rightarrow \lambda=2\Delta y\\\Rightarrow \lambda=2\times 40\\\Rightarrow \lambda=80\ \text{cm}[/tex]
Wavelength is given by
[tex]f=\dfrac{v}{\lambda}\\\Rightarrow f=\dfrac{343}{0.8}\\\Rightarrow f=428.75\ \text{Hz}[/tex]
The frequency of the tuning fork is [tex]428.75\ \text{Hz}[/tex].
What is the light speed formula?
If ' c ' is the speed of light, then the formula for it is . . .
c = 299,792,458 meters per second
How does the intensity of a sound wave change if the distance from the
source is increased by a factor of 3?
O A. The intensity decreases by a factor of 3.
O B. The intensity decreases by a factor of 9.
O c. The intensity increases by a factor of 9.
O D. The intensity increases by a factor of 3.
Answer: C- The intensity increases by a factor 9
Explanation: The intensity of a sound wave follows an inverse square law, that means that it is inversely proportional to the square of the distance: so the new distance is the intensity will increase by a factor 9.
My sentence- I hope that helped!
Intensity of a sound wave decreases by a factor of 9, if the distance from the source is increased by a factor of 3. Hence option B is correct.
Intensity of Sound is inversely proportional to the square of the distance from the sound source. Since sound waves carry its energy though a two-dimensional or three-dimensional medium, the intensity of the sound wave decreases with increasing as second power of distance form the source.
Mathematically,
Intensity I ∝ 1/D²
If the distance from the source is increased by a factor of 3, Then
I ∝ 1/3² ∝ 1/9
Intensity ∝ 1/9
Hence option B is correct.
To know more about sound wave :
https://brainly.com/question/21995826
#SPJ7.
A soccer ball with mass 0.450 kg is initially moving with speed 2.20 m/s. A soccer player kicks the ball, exerting a constant force of magnitude 38.0 N in the same direction as the ball's motion. Over what distance must her foot be in contact with the ball to increase the ball's speed to 6.00m/s?
Answer:
0.187 m
Explanation:
We'll begin by calculating the acceleration of the ball. This can be obtained as follow:
Mass (m) = 0.450 Kg
Force (F) = 38 N
Acceleration (a) =?
F = m × a
38 = 0.450 × a
Divide both side by 0.450
a = 38 / 0.450
a = 84.44 m/s²
Finally, we shall determine the distance. This can be obtained as follow:
Initial velocity (u) = 2.20 m/s.
Final velocity (v) = 6 m/s
Acceleration (a) = 84.44 m/s²
Distance (s) =?
v² = u² + 2as
6² = 2.2² + (2 × 84.44 × s)
36 = 4.4 + 168.88s
Collect like terms
36 – 4.84 = 168.88s
31.52 = 168.88s
Divide both side by 168.88
s = 31.52 / 168.88
s = 0.187 m
Thus, the distance is 0.187 m
You have 3 resistors and a battery to form a closed circuit. Two 2-Ohm resistors are in series with each other. The combination of those two resistors is in parallel with a 4-Ohm resistor. The total voltage of this circuit is 12 Volts. The total current and resistance of this circuit is a. 2 Ohms, 6 Amps b. 8 Ohms, 1.5 Amps c. 6 Ohms, 2 Amps d. 1.5 Ohms, 8 Amps
Answer:
Option 2
Explanation:
Given
Two 2-Ohm resistors are in series and these two resistors are in parallel with a 4-Ohm resistor
Equivalent resistance of two resistors in series = R1 + R2 = 2+2 = 4 Ohm
Equivalent resistance of two 4 Ohm resistors is parallel =1/ (1/4 +1/4) = 2 Ohm
Voltage = 12 Volts.
Hence, current = V/R = 12/2 = 6 Amp
Option 2 is correct
The disk weights 40 lb and has a radius of gyration is 0.6 ft. A 15 lb/ft moment is applied and the spring has a spring constant of 10 lb/ft. The system was initially at rest and the disk is rolling without slipping. The spring is initially unstretched. Find the angular velocity of the wheel when disk moves to the right 0.5 ft.
Answer:
angular velocity = 2.6543 rad/s
Explanation:
To find the angular velocity of the wheel when the disk moves to the right 0.5 ft, we need to be aware that the spring will stretch twice the value of gyration with any slight change in the position or movement of gyration since the top of the wheel is holding the spring.
The work done here:
= ((distance moved by the wheel) X spring constant X (Final displacement^2 - Initial displacement^2)) + Mass (q2 – q1)
Where q2 = 0.5ft
q1 = 0.8 lb
Note that linear velocity = radius X angular velocity
= -0.5(10)(1^2 – 0) + 15(0.5/0.8) = 4.375 ft·lb
Then, the kinetic energy :
Since the spring is initially unstretched, the initial tension in the spring = 0
So the final tension = ((distance moved by the wheel) X (linear velocity)^2 X (angular velocity) ^2 + (distance moved by the wheel) X (linear velocity) X ( radius of gyration) ^2 X (angular velocity) ^2
= 0.5(40/32.2)(0.8w) ^2 + 0.5(40/32.2)(0.6)^2 X w2
final tension = 0.621 w2
So the angular velocity of the wheel when disk moves to the right 0.5 ft = The Initial workdone + Initial kinetic energy will be equal to the final workdone + the final Kinetic energy
0 + 4.375 ft·lb = 0.621 w2
angular velocity = 2.6543 rad/s
what is the best structure for a egg dropping project you will be name brainiest
Answer:
bubble wrap in stuff animal
Explanation:
did it
Answer:
i would say putting like pillows around it i had to do it once and i won like that so
Explanation:
Determine how would the frequency of the pendulum change if it was taken to the moon by finding the ratio of its frequency on the moon fM to its frequency on the earth fE. Suppose that gE is the free-fall acceleration on the earth and gM is the free-fall acceleration on the moon.
Express your answer in terms of some or all of the variables l, m, gE, gM.
fM/fE = ?
For the pendulum taken to the moon, The frequency change that would occur is mathematically given as
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
What frequency change would occur to the pendulum if it was taken to the moon?Generally, the equation for the Time period is mathematically given as
[tex]T=2\pi\sqrt{L/g}[/tex]
Therefore
[tex]\frac{Fmoon}{Fearth}=\frac{\sqrt{g/6L}}{\sqrt{g/6L}}\\\\\frac{Fmoon}{Fearth}=\sqrt{1/6}[/tex]
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
In conclusion, The frequency change
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
Read more about frequency
https://brainly.com/question/24623209
Answer:
.408
Explanation:
Your ear is capable of differentiating sounds that arrive at each ear just 0.34 ms apart, which is useful in determining where low frequency sound is originating from. (a) Suppose a low-frequency sound source is placed to the right of a person, whose ears are approximately 18 cm apart, and the speed of sound generated is 340 m/s. How long is the interval between when the sound arrives at the right ear and the sound arrives at the left ear
Answer:
Δt = 5.29 x 10⁻⁴ s = 0.529 ms
Explanation:
The simple formula of the distance covered in uniform motion can be used to find the interval between when the sound arrives at the right ear and the sound arrives at the left ear.
[tex]\Delta s = v\Delta t\\\\\Delta t = \frac{\Delta s}{v}[/tex]
where,
Δt = required time interval = ?
Δs = distance between ears = 18 cm = 0.18 m
v = speed of sound = 340 m/s
Therefore,
[tex]\Delta t = \frac{0.18\ m}{340\ m/s}[/tex]
Δt = 5.29 x 10⁻⁴ s = 0.529 ms
As wavelength decreases the frequency of a wave _______
Question (Fill-In-the Blank):
As wavelength decreases the frequency of a wave _______
Answer:
Increases
Explanation:
When waves travel from one medium to another the frequency never changes. As waves travel into the denser medium, they slow down and wavelength decreases. Part of the wave travels faster for longer causing the wave to turn. The wave is slower but the wavelength is shorter meaning frequency remains the same.
[tex] \boxed{ \boxed{ \huge\mathrm{Answer࿐}}}[/tex]
[tex] \mathrm{wavelength \: \: \dfrac{1}{ \propto} \: \: frequency }[/tex]
So, As wavelength decreases the frequency of a wave Increases.
_____________________________
[tex]\mathrm{ \#TeeNForeveR}[/tex]
Which statement best describes covalent bonding?
A. two nonmetal atoms share electrons between them
B. many atoms give up electrons that can move among the atoms
C. two metal atoms share electrons between them
D. a metal atom transfers electrons to a nonmetal atom
Convert 125 mL to L
Answer:
1 L = 1000 mL
125 mL = 125/1000 = 0.125 L
Answer:
0.125
Explanation:
divide by 1 000 to convert mL to liters
An electron is accelerated through 1.90 103 V from rest and then enters a uniform 1.80-T magnetic field.
(a) What is the maximum magnitude of the magnetic force this particle can experience?
Answer:
https://www.slader.com/discussion/question/an-electron-is-accelerated-through-240-times-103-v-from-rest-and-then-enters-a-uniform-170-t-magnetic-field-what-are-a-the-maximum-and-b-the-9e425fbd/
( Here is solution)