Answer:
Magnitude: = 32.45 Direction: = 33.69Explanation:
The magnitude of the net force acting on an object is equal to the mass of the object multiplied by the acceleration of the object, as shown in this formula. We find its magnitude using the Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function. Given a position vector →v=⟨a,b⟩, the magnitude is found by |v|=√a2+b2. The direction is equal to the angle formed with the x-axis, or with the y-axis, depending on the application.
Which statement best explains why objects are pulled toward Earth’s center?
Answer:
Earth has a much greater mass than objects on its surface
mdjxjxjcjfkfjjdksklqlakzjxjxkkskakMmznxkxkdkd?
JHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWKJHHhuhuhfeuhfuheufhuehfuUHUeufuEHFUHeufhuHEFUuhfuhuefhuehfuehfuEHUhfiuhiUEHFIUHuhfuheufhUIHIEUHFIUiufuiehfiUFIEHIUFHIEFIUhiufhiueFUIHIuhfuiHEFUHuheufhuHUFHEUhfuhUHFUHuhfuHUFHUhufhuHUEFHuefhuhuhuefhuehfuHIUEFHIudbcueoiqjiomoiNUIECNygouwbhuiwhBCIUJHHJGEDUHJBELHKBPNIJNihbnwujhqnIAKLJNDPIUQDHNkjnxiukbdsilkunwUIBlkjbdwilkBDkhbdiKJWBDLHKWBDLWK
I hope this helped!+*
Careful measurements reveal that a star maintains a steady apparent brightness at most times except that at precise intervals of 127 hours the star becomes dimmer for about 4 hours. The most likely explanation is that Careful measurements reveal that a star maintains a steady apparent brightness at most times except that at precise intervals of 127 hours the star becomes dimmer for about 4 hours. The most likely explanation is that:________
a. the star is a white dwarf.
b. the star is periodically ejecting gas into space, every 127 hours.
c. the star is a Cepheid variable.
d. the star is a member of an eclipsing binary star system.
Answer:
d. the star is a member and also a part of an eclipsing binary star system.
Explanation:
If any star happens to be brighter for an extended period of time, however, at some times, it becomes dimmer, is due to the fact that the star is being overshadowed (hiding behind another star that is known as eclipse).
The above-mentioned eclipsing binary star system is essentially what has been defined. It occurs when two stars' orbit planes are so similar that one star will obscure (the light) of the other.
Thus, option D is correct.
How much work will a 500 watt motor do in 10 seconds?
Answer:
50j
Explanation:
Watts are units used to measure power. power can be defined as rate of energy transfer
500 watts means - 500 J of energy per second
in 1 second - 500 J of work is done
therefore within 10 seconds - 500 J/s x 10 s = 5000 J
work of 5000 J is carried out in 10 seconds
Answer:
Watts are units used to measure power. power can be defined as rate of energy transfer
500 watts means - 500 J of energy per second
in 1 second - 500 J of work is done
therefore within 10 seconds - 500 J/s x 10 s = 5000 J
work of 5000 J is carried out in 10 seconds
Explanation:
A radioactive material produces 1160 decays per minute at one time, and 4.0 h later produces 170 decays per minute. whats the half life
Answer:
Half life is 3.23 hours
Explanation:
Given
Decay rate at starting = 1160 decays per minute
Decay rate after 4 hours = 170 decays per minute
As we know know
[tex]N = N_0 *e ^{\Lambda *T}[/tex]
Substituting the given values, we get -
[tex]170 = 1160 *e ^{-4*\Lambda}\\0.1465 = e ^{-4*\Lambda}\\-0.834 = -4 * \Lambda\\\Lambda = 0.834/4\\\Lambda = 0.2085[/tex]
Also
[tex]t_{1/2} = \frac{ln2}{\Lambda}[/tex]
Substituting the given values we get -
[tex]t_{1/2} = =0.693/0.2085\\= 3.23[/tex]hours
the pygmy shrew has an average mass of 2.0 g if 49 of these shrew are placed on a spring scale with a spring constant of 24 N/m , what is the springs displacement
Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;
[tex] x = \frac {-nmg}{k} [/tex]
Substituting into the formula, we have;
[tex] x = \frac {-49*0.002*9.8}{24} [/tex]
[tex] x = \frac {-0.9604}{24} [/tex]
x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.
Application question: In Lancaster county, Pennsylvania, it is common for members of the Amish community to use windmills to pump water from underground to fill a tank for drinking water. The wind causes the turbine blades to spin, rotating a shaft, which is transferred through some gears to operate a pump, which pumps water up from deep below the ground to fill an above ground tank. Identify the energy conversions happening at each step below.
Wind blows______causing the turbine to turn, rotating shaft works pump_____energy.
Motion of water moving up from well______energy.
Water in tank which is positioned 5 feet above the ground level______potential energy.
Answer:
Wind blows__wind energy ____causing the turbine to turn, rotating shaft works pump__mechanical___energy.
Motion of water moving up from well___kinetic energy___energy.
Water in tank which is positioned 5 feet above the ground level______potential energy
Explanation:
Wind has in it wind energy which is then used to rotate the turbine shaft which is a form of mechanical work and hence possess mechanical energy
Moving water posses kinetic energy and when this water is kept at some height it possess potential energy
whem completing an emergency Roaside stop,it is necessary to put on your parking brake
A. True
B. False
Answer:
trueeeeeeee..........mmmm...........
An object is pushed with a force of 400 N for 20 meters; what is the work done on the object? Solve using W=F*d
Answer:
800joules
Explanation:
work is measured in joules
Scientists are constantly exploring the universe, looking for new planets that support life similar to the life on
Earth. A new planet that supports life would have all of the following characteristics except -
A. a gaseous atmosphere.
B. an orbiting moon.
C. liquid water.
D. protection from radiation.
A new planet that supports life would have all the following characteristics except an orbiting moon. Hence, option B is correct.
What is a Planet?An enormous, spherical celestial object known as a planet is neither a star nor its remains. The nebular hypothesis, which states how an interstellar cloud falls out of a nebula to produce a young protostar encircled by a protoplanetary disk, is now the best explanation for planet formation.
By gradually accumulating material under the influence of gravity, or accretion, planets develop in this disk.
The rocky planets Mercury, Venus, Earth, and Mars, as well as the giant planets Jupiter, Saturn, Uranus, and Neptune, make up the Solar System's minimum number of eight planets. These planets all revolve around axes that are inclined relative to their respective polar axes.
To know more about Planet:
https://brainly.com/question/14581221
#SPJ2
What are applications of zeroth law of thermodynamics?
Answer:
Applications of zeroth law of thermodynamics:
1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.
2. We keep things in the fridge and those things come equilibrium with fridge temperature.
3. Temperature measurement with a thermometer or another device.
4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.
5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.
The universe cooled after the Big Bang.At some point hydrogen atoms combined to form helium.What is this process called?
Answer:
Nuclear fusion
Explanation:
Question 2 of 20 :
Select the best answer for the question.
2. Which of the following is considered to be a vector?
A. Velocity
B. Time
C. Temperature
D. Mass
Mark for review (Will be highlighted on the review page)
The answer is A. velocity .
Velocity is a vector quantity because it need magnitude as well as direction to be defined.
red light from a He-Ne laser is at 590.5 nm in the air. it is fired at an angle of 31.0 to horizontal at a flat transparent crystal of calcite (n= 1.34 ar this frequency) .find the wavelength and frequency of the light inside the crystal and the angle from horizontal that it travels inside the calcite crystal.
Answer:
7374.4
Explanation:
I took the test
(filler so I can post)
What are the similarities between a resultant force equilibrant force?
Answer:
Explanation:
Resultant is a single force that can replace the effect of a number of forces. "Equilibrant" is a force that is exactly opposite to a resultant. Equilibrant and resultant have equal magnitudes but opposite directions.
If the acceleration of the body is towards the center, what is the direction of the unbalanced force ? Using a complete sentence , describe the direction of the net force that causes the body to travel in a circle at a constant speed.
Accelerating objects are changing their velocity. Velocity is often thought of as an object's speed with a direction. Thus, objects which are accelerating are either changing their speed or changing their direction. They are either speeding up, slowing down or changing directions. Changing the velocity in any one of these three ways would be an example of an accelerated motion.
What happens when Earth rotates on its axis and how long does it take
Answer:
You get Day and Night
It takes 24 hour
Answer:
Explanation:
The Earth's orbit makes a circle around the sun. At the same time the Earth orbits around the sun, it also spins.Since the Earth orbits the sun and rotates on its axis at the same time we experience seasons, day and night, and changing shadows throughout the day.It only takes 23 hours, 56 minutes and 4.0916 seconds for the Earth to turn once on its axis.
A doorknob is a type of wheel and axle. In a doorknob, the door handle acts as the wheel. The handle is connected to a cylinder, called a spindle, which acts as the axle. When the handle turns, the spindle turns in the same direction. The spindle is located inside the handle and pulls the latch back and forth, allowing the door to open.
In the doorknob shown above, when the handle is rotated a distance of 84 millimeters, the spindle is rotated a distance of 14 millimeters. What is the mechanical advantage of this doorknob?
A. 504
B. 6
C. 84
D. 14
an object is moving at 60m/s and has a mass of 5 kg what is its momentum
Answer:
300
Explanation:
the momentum is 300
p=mv
p=5×60
5×60 =300
What is the magnitude of the gravitational force acting on a
1.0 kg object which is 1.0 m from another 1.0 kg object?
Ans[tex]^{}[/tex]wer and expl[tex]^{}[/tex]anation is in a fi[tex]^{}[/tex]le. Li[tex]^{}[/tex]nk below! Go[tex]^{}[/tex]od luck!
bit.[tex]^{}[/tex]ly/3a8Nt8n
An ideal horizontal spring-mass system has a mass of 1.0 kg and a spring with constant 78 N/m. It oscillates with a period of 0.71 seconds. When this same spring-mass system oscillates vertically instead, the period is _______ seconds. Enter 2 significant figures (a total of three digits) and use g = 10.0 m/s2 if necessary.
Answer:
T = 0.71 seconds
Explanation:
Given data:
mass m = 1Kg, spring constant K = 78 N/m, time period of oscillation T = 0.71 seconds.
We have to calculate time period when this same spring-mass system oscillates vertically.
As we know
[tex]T = 2\pi \sqrt{\frac{m}{K} }[/tex]
This relation of time period is true under every orientation of the spring-mass system, whether horizontal, vertical, angled or inclined. Therefore, time period of the same spring-mass system oscillating vertically too remains the same.
Therefore, T = 0.71 seconds
To determine the muzzle velocity of a bullet fired from a rifle, you shoot the 2.47-g bullet into a 2.43-kg wooden block. The block is suspended by wires from the ceiling and is initially at rest. After the bullet is embedded in the block, the block swings up to a maximum height of 0.295 cm above its initial position. What is the velocity of the bullet on leaving the gun's barrel
Answer:
The velocity of the bullet on leaving the gun's barrel is 236.36 m/s.
Explanation:
Given;
mass of the bullet, m₁ = 2.47 g = 0.00247 kg
mass of the wooden block, m₂ = 2.43 kg
initial velocity of the wooden block, u₂ = 0
height reached by the bullet-block system after collision = 0.295 cm = 0.00295 m
let the initial velocity of the bullet on leaving the gun's barrel = v₁
let final velocity of the bullet-wooden block system after collision = v₂
Apply the principle of conservation of linear momentum;
Total initial momentum = Total final momentum
m₁v₁ + m₂u₂ = v₂(m₁ + m₂)
0.00247v₁ + 2.43 x 0 = v₂(2.43 + 0.00247)
0.00247v₁ = 2.4325v₂ -------(1)
The kinetic energy of the bullet-block system after collision;
K.E = ¹/₂(m₁ + m₂)v₂²
K.E = ¹/₂ (2.4325)v₂²
The potential energy of the bullet-block system after collision;
P.E = mgh
P.E = (2.4325)(9.8)(0.00295)
P.E = 0.07032
Apply the principle of conservation of mechanical energy;
K.E = P.E
¹/₂ (2.4325)v₂² = 0.07032
1.21625 v₂² = 0.07032
v₂² = 0.07032 / 1.21625
v₂² = 0.0578
v₂ = √0.0578
v₂ = 0.24 m/s
Substitute v₂ in equation (1), to obtain the initial velocity of the bullet;
0.00247v₁ = 2.4325v₂
0.00247v₁ = 2.4325 (0.24)
0.00247v₁ = 0.5838
v₁ = 0.5838 / 0.00247
v₁ = 236.36 m/s
Therefore, the velocity of the bullet on leaving the gun's barrel is 236.36 m/s.
What does the Curl-up test assess?
O A.
Body composition
ОВ.
Muscular strength and endurance
O C. Flexibility
D.
Cardiovascular fitness
HURRRY
(it’s pe not physics)
Answer:
assesses C.) muscular endurance
Explanation:
A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest. It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.48 kg and 2.77 kg, and the length of the wire is 1.11 m. Find the velocity of the ball just after the collision.
Answer: Velocity of the ball just after the collision is -1.414 m/s.
Explanation:
As energy is conserved in a reaction so here, energy before collision will be equal to the energy after collision.
[tex]E_{before} = mgh = E_{after} = \frac{1}{2}mv_{o}^{2}[/tex]
where,
m = mass
g = gravitational energy = [tex]9.8 m/s^{2}[/tex]
h = height or length
[tex]v_{o}[/tex] = initial velocity
Also here, height is the length of wire. Let the height be denoted by 'L'. Therefore,
[tex]\frac{1}{2}mv_{o}^{2} = mgL\\v_{o}^{2} = 2gL\\v_{o} = \sqrt{2gL}\\= \sqrt{2 \times 9.8 m/s^{2} \times 1.11 m}\\= 4.66 m/s[/tex]
Formula used to calculate velocity after the collision is as follows.
[tex]v_{f ball} = v_{o} [\frac{m_{ball} - m_{block}}{m_{ball} + m_{block}}][/tex]
where,
[tex]v_{f ball}[/tex] = final velocity of ball after collision
[tex]m_{ball}[/tex] = masses of ball
[tex]m_{block}[/tex] = masses of block
Substitute the values into above formula as follows.
[tex]v_{f ball} = v_{o} [\frac{m_{ball} - m_{block}}{m_{ball} + m_{block}}]\\= 4.66 m/s [\frac{1.48 kg - 2.77 kg}{1.48 kg + 2.77 kg}]\\= 4.66 m/s \times (-0.303)\\= -1.414 m/s[/tex]
Thus, we can conclude that velocity of the ball just after the collision is -1.414 m/s.
An object changes velocity from 100m/s
to 76m/s in 6 seconds. If it has a mass of
20kg, what is the net force?
Answer:
1-1=0
Explanation:
ahriqqwertyuioo
Classify each change (which can be manipulated within the green box) according to its effect on the wavelength.
a. Decrease frequency
b. Decrease damping
c. Decrease amplitude
d. Increase frequency
e. Increase amplitude
f. Increase damping
g. Shortens wavelength
Answer:
Explanation:
The classification will be made into 3 categories, which are
Ones that shortens wavelengths
Ones that lengthens wavelengths
Ones that has no effect on wavelengths
Shortens wavelengths -> Increase frequency
Lengthens wavelengths -> Decrease frequency
No effect -> Increase amplitude, decrease amplitude, increase damping, decrease damping.
When two substances that cannot dissolve each other are mixed, a ________ mixture is formed
Answer: hetero i think i dont know
Explanation:
Answer:
When two substances that cannot dissolve each other are mixed, a mixture is formed.
i hope this helps a little bit.
Planet X has a moon similar to Earth’s moon.
Which path would this moon’s orbit take?
Swordfish are capable of stunning output power for short bursts. A 650 kg swordfish has a cross-sectional area of 0.92 m2 and a drag coefficient of 0.0091- very low due to some evolutionary adaptations. Such a fish can sustain a speed of 30 m/s for a few seconds. Assume seawater has a density of 1026 kg/m3. a) How much power does the fish need to put out for motion at this high speed
Answer:
the required or need power is 115960.57 Watts
Explanation:
First of all, we take down the data we can find from the question, to make it easier when substituting values into formulas.
mass of swordfish m = 650 kg
Cross - sectional Area A = 0.92 m²
drag coefficient C[tex]_D[/tex] = 0.0091
speed v = 30 m/s
density p = 1026 kg/m³
Now, we determine our Drag force F[tex]_D[/tex]
Drag force F[tex]_D[/tex] = [tex]\frac{1}{2}[/tex] × C[tex]_D[/tex] × A × p × v²
Next, we substitute the values we have taken down, into the formula.
Drag force F[tex]_D[/tex] = [tex]\frac{1}{2}[/tex] × 0.0091 × 0.92 × 1026 × (30)²
Drag force F[tex]_D[/tex] = 4.294836 × 900
Drag force F[tex]_D[/tex] = 3865.3524
Now, we determine the power needed P[tex]_w[/tex]
P[tex]_w[/tex] = F[tex]_D[/tex] × v
we substitute
P[tex]_w[/tex] = 3865.3524 × 30
P[tex]_w[/tex] = 115960.57 Watts
Therefore, the required or need power is 115960.57 Watts
A geologist notices that a river is eroding its valley at a constant rate. Knowing the height of the valley walls, how could the geologist figure out when the river started carving the valley?
A.
Count growth rings of trees growing on the valley floor.
B.
Divide the height of the valley walls by the rate of erosion.
C.
Fill up the river valley with rocks, and time how long it takes the rocks to wash out.
D.
Sit and observe the river for a few hours until the valley walls double in height.
Answer:
B.
Divide the height of the valley walls by the rate of erosion.
Explanation:
There is a relationship between the rate of erosion and the hieght at which it is eroded according to Newton's law of motion. In the case of the scenario above, the best way to determine the time the river started carving the valley would be the division of the height of the valley walls by the rate of erosion.