An intramolecular force (or primary forces) is any force that binds together the atoms making up a molecule or compound, not to be confused with intermolecular forces, which are the forces present between molecules.
what units of measurement measures both velocity and speed
Answer:
[tex]metre \: per \: second[/tex]
Explanation:
Velocity is a derived quantity and the S.I unit is metre per second.Speed is also a derived quantity which is has the S.I unit to be metre per second.
A cat pushes a porcelain statue off a bookshelf with a speed of 0.5 m/s and it smashed on the floor 0.85 sec later.
Answer:
167?
Explanation:
i added both
Given that o.2i+bj+o.4k is a unit vector,what is the value of b?
Answer:
b = 0.89
Explanation:
The given vector is, [tex]A=0.2i+bj+0.4k[/tex]
A is a unit vector
We need to find the value of b.
For a unit vector, |A| = 1
So,
[tex]0.2^2+b^2+0.4^2=1\\\\0.04+b^2+0.16=1\\\\0.2+b^2=1\\\\b^2=1-0.2\\\\b=0.89[/tex]
So, th value of b is 0.89.
plz answer fast the question
Answer:
Angle of incidence = 20°
Angle of reflection = 20°
Explanation:
Applying,
The first Law of Refraction: The incident ray, the reflected ray and the normal at the point of incidence all lies in the plane.
From the diagram,
Angle of incidence = 90-70
Angle of incidence = 20°
From the law of reflection,
Angle of incidence = Angle of reflection
Therefore,
Angle of reflection = 20°
Which conclusion can be made based on the information in the table?
Wave speed and wavelengths can vary inversely to produce the same frequency.
O Frequency and wave speed can vary directly to produce the same wavelength.
O Wavelengths and frequency can vary inversely to produce the same wave speed.
O Frequency and wavelengths can vary directly to produce the same wave speed.
Mark this and return
Save and Exit
Next
Sul
Previous Activity
Answer:
The correct option is (b).
Explanation:
The relation between the wavelength and frequency is given by :
[tex]\lambda=\dfrac{v}{f}[/tex]
Where
v is the wave speed
f is the frequency of a wave
It is clear from the above equation that the wavelengths and frequency can vary inversely to produce the same wave speed.
g Calculate the final speed of a solid cylinder that rolls down a 5.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a radius of 4.00 cm.
Answer:
[tex]V=8.08m/s[/tex]
Explanation:
From the question we are told that:
Height[tex]h=5.00m[/tex]
Mass [tex]m=0.750kg[/tex]
Radius [tex]r=4.00cm=>0.04m[/tex]
Generally the equation for Total energy is mathematically given by
[tex]mgh=\frac{1}{2}mv^2+\frac{1}{2}Iw^2[/tex]
Therefore
[tex]V=\sqrt{\frac{4gh}{3}}[/tex]
[tex]V=\sqrt{\frac{4*9.8*5}{3}}[/tex]
[tex]V=8.08m/s[/tex]
To take off from the ground, an airplane must reach a sufficiently high speed. The velocity required for the takeoff, the takeoff velocity, depends on several factors, including the weight of the aircraft and the wind velocity.
Required:
a. A plane accelerates from rest at a constant rate of 5.00m/s^2 along a runway that is 1800m long. Assume that the plane reaches the required takeoff velocity at the end of the runway. What is the time tTO needed to take off?
b. What is the distance dfirst traveled by the plane in the first second of its run?
c. What is the distance dfirst traveled by the plane in the first second of its run?
Answer:
(a)
67.1 s
(b) 2.5 m
(c) 2.5 m
Explanation:
initial speed, u = 0 m/s
final speed, v = 70 m/s
acceleration, a = 5 m/s2
distance, s = 1800 m
(a) Use third equation of motion
[tex]v^2= u^2 + 2 a s \\\\v^2 = 0 + 2 \times 5\times 1800\\\\v =134.2 m/s[/tex]
Let the time is t.
Use first equation of motion
v = u + at
134.2 = 0 + 5 t
t = 67.1 s
(b) Use second equation of motion
[tex]s = u t +0.5 at^2\\\\s = 0 +0.5\times 5\times 1 \\\\s = 2.5 m[/tex]
(c) Use second equation of motion
[tex]s = u t +0.5 at^2\\\\s = 0 +0.5\times 5\times 1 \\\\s = 2.5 m[/tex]
Two point charges exert a 6.10 N force on each other. What will the force become if the distance between them is increased by a factor of 8
Answer:
0.0953125 N
Explanation:
Applying,
F = kq'q/r²................. Equation 1
Where F = electrostatic force, k = coulomb's constant, q' and q = first and second charge respectively, r = distance between the charge.
From the equation,
If both charges remain constant,
Therefore,
F = C/r²
C = Constant = product of the two charge(q' and q) and k
Fr² = F'r'²................ Equation 2
From the question,
Given: F = 6.10 N
Assume: r = x m, r' = 8x
Substitute these value into equation 2
6.1(x²) = F'(8x)²
F' = 6.1/64
F' = 0.0953125 N
Hence the new force will become 0.0953125 N
A locomotive pulls 11 identical freight cars. The force between the locomotive and the first car is 150.0 kN, and the acceleration of the train is 2 m/s2. There is no friction to consider. 1) Find the force between the tenth and eleventh cars. (Express your answer to two significant figures.)
Answer:
The force between the 10 th car and the 11 th car is 13636.4 N.
Explanation:
Force, F = 150 kN
acceleration, a = 2 m/s^2
Let the mass of each car is m. \Total numbers of cars = 11
F = n m a
150000 = 11 x m x 2
m = 6818.18 kg
The force between the 10 th and 11 th car is
T = ma = 6818.18 x 2 = 13636.4 N
PLEASE ANSWR 1ST AND I WILL MARK U BRAINLIEST
Two statements are given- one labeled Assertion (A) and the other labeled Reason ®. Select
the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:
a. Both A and R are true, and R is correct explanation of the assertion.
b. Both A and R are true, but R is not the correct explanation of the assertion.
c. A is true, but R is false.
d. A is false, but R is true.
Assertion: An object has a negative acceleration.
Reason: The velocity of an object decreases in the same direction.
Answer:
Where is the R statement?
A ball is thrown horizontally at a speed of 24 meters per second from the top of a cliff. If the ball hits the ground 6.0 seconds later, approximately how high is the cliff?
Answer:
144 meters
Explanation:
it takes 6 seconds to hit the ground right and the ball lays off 24 m per second .
so by the time the ball hits the ground 6 seconds passed. so that means the cliff is 6.0×24=144
16. The sum of kinetic energies in an object.
17. The essential device in power plants that convert mechanical
energy to electricity.
18. The device that converts electricity back to mechanical energy
19. The only EM wave that is seen by naked eye.
20. A device that converts light to electricity.
A car is stopped for a traffic signal. When the light turns green, the car accelerates, increasing its speed from zero to 9.41 m/s in 4.24 s. What is the magnitude of the linear impulse experienced by a 67.0 kg passenger in the car during this time
Answer:
the impulse experienced by the passenger is 630.47 kg
Explanation:
Given;
initial velocity of the car, u = 0
final velocity of the car, v = 9.41 m/s
time of motion of the car, t = 4.24 s
mass of the passenger in the car, m = 67 kg
The impulse experienced by the passenger is calculated as;
J = ΔP = mv - mu = m(v - u)
= 67(9.41 - 0)
= 67 x 9.41
= 630.47 kg
Therefore, the impulse experienced by the passenger is 630.47 kg
Problem
A charged particle is moving in the presence of uniform magnetic field. The mass of the particle
is m = 10−6 kg its charge is Q = 10−5 C and the magnetic field vector is B~ = (1T, 0, 0). At the
beginning the velocity vector of the particle is ~v0 = (12 m/s, 0, 5 m/s).
a.) How large will the x component of the velocity of the particle be in t = 2 s?
b.) Where will the particle be in t = 3.14 s?
c.) How large will the magnitude of the velocity be in t = 2.5 s?
Answer:
Answer is a I checked the work
What is the relationship between organ systems and organs? organs are made from one type of organ system organ systems are made from one type of organ organs are made from different types of organ systems organ systems are made from different types of organs
assuming a filament in a 120W light bulb acts like a prefect blackbody, what is the temperature of the hottest portion of the filament if it has a surface area of 6.4×10^_5m^2. The stefan- boltzmann constant is 5.67×10^-8W/(m2.k2) A. 12OOk B. 2400K C. 2100K
Answer:
T = 2398 K
Explanation:
To calculate the emission of the light bulb we use the law is Stefan
P = σ A e T⁴
as they indicate that the filament is a black body, the emissivity is equal to 1 (e = 1)
T = [tex]\sqrt[4]{\frac{P}{ \sigma A} }[/tex]
let's calculate
T =[tex]\sqrt[4]{\frac{120}{5.67 \ 10^{-8} \ 6.4 \ 10^{-5}} }[/tex]
T = [tex]\sqrt[4]{33.06878 \ 10^{12} }[/tex]
T = 2,398 10³ K
T = 2398 K
If the loading is 0.4, the coinsurance rate is 0.2, the number of units of medical care is 100, and the number of units of medical care is 1. What is the premium of this insurance?
Answer:
72 is the premimum of the insurance.
Explanation:
Below is the given values:
The loading = 0.4
Coinsurance rate = 0.2
Number of units = 100
Total number of units = 100 * 0.4 = 40
Remaining units = 60 * 0.2 = 12
Add the 60 and 12 values = 60 + 12 = 72
Thus, 72 is the premimum of the insurance.
Celestial Events, such as rise, set or transit times are represented by the intersection of various diagonal lines (and loops) with the horizontal and vertical lines, this will allow us to determine what about the Celestial Event?
a) Distance
b) Latitude
c) Time and Date
d) Gamma Rays
Answer:
C) time and date
Explanation:
Celestial event is an astronomical phenomenon. This involves the conjunction of one or more celestial objects such as lunar and solar eclipse or meteor shower. The intersecting horizontal and vertical lines allow the astrologists to determine the time and date of the celestial event.
what is the frequency of a wave related to
Answer:
Frequency is the number of complete oscillations or cycles or revolutions made in one second.
Suppose a uniform slender rod has length L and mass m. The moment of inertia of the rod about about an axis that is perpendicular to the rod and that passes through its center of mass is given by Icm= 1/2mL^2.
Required:
Find Icmd the moment of inertia of the rod with respect to a parallel axis through one end of the rod.
Answer:
right now I see some of you have a great day
Answer: (mI^2)/3
Explanation:
The parallel axis theorem for the calculation of inertia is: I = I CM + Md^2
So, I is the apathy from an axis that is at distance d from the center of mass and LCM the apathy when the axis passes through the center of mass. Do to this, the axis passes through the end of the rod. In analysis, d=l/2
So, we have the equation:
I = mI^2/12 + m (1/2)^2 = mI^2/12 + mI^2/4 = mI^2/12 + 3mI^2/12 = mI^2/3
This relents us the terminal result: (ml^2)/3.
A remote ranch has a cylindrical water storage tank. It has a vertical central axis, a diameter of 24 ft, the sides are 5 ft high. The depth of this water is 4 ft. How much work (in ft-lb) would be required to pump all of the water over the upper rim?
Answer:
Explanation:
From the given information:
The diameter of the pool = 24 ft
The radius will be = 24 ft/2 = 12 ft
The volume of water V = πr²(Δx)
V = π× 12²×(Δx)
V = 144π(Δx)
Le's assume water weighs 62.5 lb/ft³;
Then:
the Force (F) will be:
= 144π(Δx) * 62.5
= 9000πΔx lb
Also, the side of cylindrical water = 5 ft while its depth = 4ft
As such, each slide of water d = 5 - x, and the region is between 0 and 4.
∴
The required work is:
[tex]W = \int^4_0 (5-x) 9000 \ \pi dx \\ \\ W = 9000 \int^4_0 (5-x) \ dx \\ \\ W = 9000 \pi \Big [5x - \dfrac{x^2}{2} \Big]^4_0 \\ \\ W = 9000 \pi \Big [5*4- \dfrac{4^2}{2} \Big] \\ \\ W = 9000 \pi \Big [20-8 \Big] \\ \\ W = 9000 \pi \Big [12 \Big] \\ \\ W = 9000 \pi (12) \\ \\ \mathbf{W = 108000 \pi \ ft.lb}[/tex]
How far did you travel in 10 hours if you drove at a constant speed of 5km/hr? *
Answer:
you drove 50km
Explanation:
10×5 hope this helps
Answer:
50 Km
Explanation:
This is how far you have got on your journey if traveling like this.
Please Mark as Brainliest
Hope this Helps
A disk of charge is placed in the x-y plane, centered at the origin. The electric field along the axis of a positive disk of charge... points towards the disk along the z-axis. points away from the disk along the z-axis. always points in the positive z-direction. none of these choices
Answer:
Points away from the disk along the z-axis.
Explanation:
Along the axis of the disk, which is the z - axis, the total vertical electric field components of the charged disk sum up while the horizontal components cancel out. Thus, leaving only vertical components of electric field along the axis of the disk.
Since the disk is positively charged and electric field lines point away from a positive charge, the electric field along the axis of a positive disk of charge points away from the disk along the z-axis.
You are designing a ski jump ramp for the next Winter Olympics. You need to calculate the vertical height from the starting gate to the bottom of the ramp. The skiers push off hard with their ski poles at the start, just above the starting gate, so they typically have a speed of 1.8 m/s as they reach the gate. For safety, the skiers should have a speed of no more than 28.0 m/s when they reach the bottom of the ramp. You determine that for a 75kg skier with good form, friction and air resistance will do total work of magnitude 3500 J on him during his run down the slope. What is the maximum height (h) for which the maximum safe speed will not be exceeded?
Answer:
44.6 m
Explanation:
From the law of conservation of energy, the total energy at the top of the ramp, E equals the total energy at the bottom of the ramp.
E = E'
U₁ + K₁ + W₁ = U₂ + K₂ + W₂ where U₁ = potential energy at top of ramp = mgh where = height of ramp, K₁ = kinetic energy at top of ramp = 1/2mv₁² where v₁ = speed at top of ramp = 1.8 m/s, W₁ = work done by friction and air resistance at top of ramp = 0 J, U₂ = potential energy at bottom of ramp = 0 J(since the skier is at ground level h = 0), K₂ = kinetic energy at bottom of ramp = 1/2mv₂² where v₂ = speed at bottom of ramp = 28.0 m/s, W₁ = work done by friction and air resistance at bottom of ramp = 3500 J
Substituting the values of the variables into the equation, we have
U₁ + K₁ + W₁ = U₂ + K₂ + W₂
mgh + 1/2mv₁² + W₁ = U₂ + 1/2mv₂² + W₂
mgh + 1/2m(1.8 m/s)² + 0 J = 0 J + 1/2m(28 m/s)² + 3500 J
9.8 m/s² × 75 kg h + 1/2 × 75 kg (3.24 m²/s²) + 0 J = 0 J + 1/2 × 75 kg (784 m²/s²) + 3500 J
(735 kgm/s²)h + 75 kg(1.62 m²/s²) = 75 kg(392m²/s²) + 3500 J
(735 kgm/s²)h + 121.5 kgm²/s² = 29400 kgm²/s² + 3500 J
(735 kgm/s²)h + 121.5 J = 29400 J + 3500 J
(735 kgm/s²)h + 121.5 J = 32900 J
(735 kgm/s²)h = 32900 J - 121.5 J
(735 kgm/s²)h = 32778.5 J
h = 32778.5 J/735 kgm/s²
h = 44.6 m
So, the maximum height of the ramp for which the maximum safe speed will not be exceeded is 44.6 m.
Your job is to lift 30 kgkg crates a vertical distance of 0.90 mm from the ground onto the bed of a truck. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Force and power. Part A How many crates would you have to load onto the truck in one minute for the average power output you use to lift the crates to equal 0.50 hphp
Answer:
The number of crates is 84580.
Explanation:
mass, m = 30 kg
height, h = 0.9 mm
Power, P = 0.5 hp = 0.5 x 746 W = 373 W
time, t = 1 minute = 60 s
Let the number of crates is n.
Power is given by the rate of doing work.
[tex]P = \frac{n m gh}{t}\\\373 =\frac{n\times 30\times9.8\times 0.9\times 10^{-3}}{60}\\\\n =84580[/tex]
Please help I need this done within 30 mins
It may be thinner and more dense? I’m not too experienced in the study of Earth’s crust. However, I know enough to remember that the earths crust is thin.
You swing a bat and hit a heavy box with a force of 1273 N. The force the box exerts on the bat is Group of answer choices less than 1273 N if the box moves. exactly 1273 N whether or not the box moves. None of the above choices are correct. exactly 1273 N only if the box does not move. greater than 1273 N if the bat bounces back. greater than 1273 N if the box moves.
Answer:
exactly 1273 N whether or not the box moves.
Explanation:
In the case when the bat is swing and it is hitted to a heavy box having a force of 1273 N so here the force of the box that exert on the box should be accurately 1273 N even if the box is moved or not. As the third law of the newton should be equivalent & the opposite reaction
Therefore as per the given situation, the above represent the answer
BRAINLY PLS HELP ME!!!
Should the Us government regulate sugar? In once sentence write down what you are preparing to argue or what stance you are going to take. This will help you to create a starting point for your idea
Answer:
yes
Explanation:
Sugar can cause health problems.
I believe that sugar should be regulated by the government since it causes heath problems. As according to this website heathline.com that up to one third of the population in America is obese. As well as that regulating sugar will greatly help lowering that number, seeing that many food products have tons of sugar in them. By lowering the sugar and regulating it can cause less obesity among the average person in the US. As stated by HeathlyFoodAmerca.org consuming too much sugar can cause increased heath problems as shown, heart disease, diabetes, and teeth decay and this is why I believe that the U.S government should regulate sugar more.
A truck is hauling a 300-kg log out of a ditch using a winch attached to the back of the truck. Knowing the winch applies a constant force of 2850 N and the coefficient of kinetic friction between the ground and the log is 0.45, determine the time for the log to reach a speed of 0.5 m/s
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s
Define Potential Energy
Begin by defining potential energy in your own words within one concise eight word sentence
Answer:
potential energy is a type of energy an object has because of it's position