For the following set of pressure/volume data, calculate the new volume of the gas sample after the pressure change is made. Assume that the temperature and the amount of gas remain constant.

a. 125 mL at 755 mm Hg; V =2mL at 780 mm Hg
b. 223 mL at 1.08 atm; V =2mL at 0.951 atm
c. 3.02 L at 103 kPa; V= 2Lat 121 kPa

Answers

Answer 1

Answer:

a. 121 ml, b. 253 ml and c. 2.57 L.

Explanation:

The new volume can be calculated by using the Boyle's law equation:  

P1V1 = P2V2

In the equation, P1 and P2 are the initial and final pressures and V1 and V2 are the initial and final volumes for a real gas at constant temperature.  

a) Based on the given information, P1 = 755 mmHg, V1 = 125 ml, P2 = 780 mm Hg and V2 will be,  

V2 = P1V1/P2

V2 = 755 mmHg × 125 ml/780 mmHg

V2 = 121 ml

b) Based on the given information, P1 = 1.08 atm, V1 = 223 ml, P2 = 0.951 atm and V2 will be,  

V2 = P1V1/P2

V2 = 1.08 atm × 223 ml/0.951 atm

V2 = 253 ml

c) Based on the given information, P1 = 103 kPa, V1 = 3.02 L, P2 = 121 kPa and V2 will be,  

V2 = P1V1/P2

V2 = 103 kPa × 3.02 L/121kPa

V2 = 2.57 L


Related Questions

. You have two solutions, both with a concentration of 0.1M. Solution A contains a weak acid with a pKa of 5. ThepH of solution A is 3. Solution B contains a weak acid with a pKa of 9. The pH of solution B is:

Answers

Answer:

pH of solution B is 5

Explanation:

A weak acid, HA, is in equilibrium with water as follows:

HA(aq) + H₂O(l) ⇄ A⁻(aq) + H₃O⁺(aq)

Where Ka (10^-pKa = 1x10⁻⁹) is:

Ka = 1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

Where concentrations of this species are equilibrium concentrations

As initial concentration of HA is 0.1M, the equilibrium concentrations of the species are:

[HA] = 0.1M - X

[A⁻] = X

[H₃O⁺] = X

Where X is the amount of HA that reacts until reach the equilibrium, X is reaction coordinate.

Replacing in Ka expression:

1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

1x10⁻⁹ = [X] [X] / [0.1 - X]

1x10⁻¹⁰ - 1x10⁻⁹X = X²

1x10⁻¹⁰ - 1x10⁻⁹X - X² = 0

Solving for X:

X = -0.00001 → False solution, there is no negative concentrations.

X = 1x10⁻⁵ → Right solution.

As [H₃O⁺] = X

[H₃O⁺] = 1x10⁻⁵M

And pH = -log[H₃O⁺]

pH = 5

pH of solution B is 5

Which of the following forms a molecular solid? Which of the following forms a molecular solid? C10H22 CaO gold C, graphite

Answers

Answer:

C10H22

Explanation:

Graphite is known as an allotrope of carbon. Its characteristics include being black and slippery and as used as lubricants.

Gold (Au) is an element on the periodic table with atomic number 79 and a mass number 197 which exists as a metal due to its hydrogen bonds.

C10H22 which is also known as decane belongs to the Alkane family.The General forces of attraction between the alkane family are weak but in the case of decade there is Van der waal force which makes Decane C10H22 a Molecular Solid.

1. What volume in milliliters of 0.100 M HClO₃ is required to neutralize 40.0 mL of 0.140 M KOH? 2. A 25.0 mL solution of HNO₃ is neutralized with 15.7 mL of 0.250 M Ba(OH)₂. What is the concentration of the original HNO₃ solution?

Answers

Answer:

The correct answer is 1) 56 ml and 2) 0.314 M

Explanation:

1. The reaction taking place in the given case is,  

HClO₃ + KOH ⇒ KClO₃ + H2O, the molarity of HClO₃ given is 0.100 M, the molarity of KOH given is 0.140 M and the volume of KOH given is 40 ml, there is a need to find the volume of HClO₃.  

Therefore, the mole of HClO₃ = mole of KOH

= MHClO₃ × VHClO₃ = MKOH × VKOH

= 0.100 M × VHClO₃ = 0.140 M × 40 ml

VHClO₃ = 0.140 M × 40 ml/0.100 M

VHClO₃ = 56 ml.  

2. The reaction taking place is,  

2HNO₃ + Ba(OH)₂ ⇒ Ba(NO₃)₂ + 2H₂O

The volume of HNO₃ given is 25 ml, the molarity of Ba(OH)2 is 0.250 M, the volume of Ba(OH)2 is 15.7 ml, the n or the number of moles of HNO₃ is 2, and the n of Ba(OH)2 is 1, the concentration or M of HNO₃ is,  

M₁V₁/n₁ = M₂V₂/n₂

M₁ × 25/ 2 = 0.25 × 15.7/1

M₁ or molarity of HNO₃ = 0.314 M

1. The volume of HClO₃ required to neutralize the KOH is 56.0 mL

2. The concentration of the original HNO₃ solution is 0.314 M

1.

First, we will write a balanced chemical equation for the reaction

The balanced chemical equation for the reaction is

HClO₃ + KOH → KClO₃ + H₂O

This means,

1 mole of HClO₃ is required to neutralize 1 mole of KOH

From the titration formula

[tex]\frac{C_{A}V_{A} }{C_{B}V_{B}} = \frac{n_{A}}{n_{B}}[/tex]

Where

[tex]C_{A}[/tex] is the concentration of acid

[tex]C_{B}[/tex] is the concentration of base

[tex]V_{A}[/tex] is the volume of acid

[tex]V_{B}[/tex] is the volume of base

[tex]n_{A}[/tex] is the mole ratio of acid

[tex]n_{B}[/tex] is the mole ratio of base

From the given information,

[tex]C_{A} = 0.100 \ M[/tex]

[tex]C_{B} = 0.140 \ M[/tex]

[tex]V_{B} = 40.0 \ mL[/tex]

From the balanced chemical equation

[tex]n_{A} = 1[/tex]

[tex]n_{B} =1[/tex]

Putting the values into the formula, we get

[tex]\frac{0.100 \times V_{A} }{0.140 \times 40.0} = \frac{1}{1}[/tex]

∴ [tex]0.100 \times V_{A} = 0.140 \times 40.0[/tex]

[tex]V_{A}=\frac{0.140\times 40.0}{0.100}[/tex]

[tex]V_{A}=\frac{5.60}{0.100}[/tex]

[tex]V_{A}=56.0 \ mL[/tex]

Hence, the volume of HClO₃ required to neutralize the KOH is 56.0 mL

2.

First, we will write the balanced chemical equation for the reaction

The balanced chemical equation for the reaction is

2HNO₃ + Ba(OH)₂ → Ba(NO₃)₂ + 2H₂O

This means, 2 mole of HNO₃ is required to neutralize 1 mole Ba(OH)₂  

From the given information,

[tex]V_{A} = 25.0\ mL[/tex]

[tex]C_{B} = 0.250 \ M[/tex]

[tex]V_{B} = 15.7 \ mL[/tex]

From the balanced chemical equation

[tex]n_{A} = 2[/tex]

[tex]n_{B} =1[/tex]

Also, Using the titration formula

[tex]\frac{C_{A}V_{A} }{C_{B}V_{B}} = \frac{n_{A}}{n_{B}}[/tex]

We get

[tex]\frac{C_{A} \times 25.0 }{0.250 \times 15.7} = \frac{2}{1}[/tex]

Then,

[tex]C_{A} = \frac{2\times 0.250 \times 15.7} {1 \times 25.0}[/tex]

[tex]C_{A} =\frac{7.85}{25.0}[/tex]

[tex]C_{A} =0.314 \ M[/tex]

Hence, the concentration of the original HNO₃ solution is 0.314 M

Learn more here: https://brainly.com/question/16870772

Consider the reaction: C(s) + O2(g)CO2(g) Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below: a.) C(s) + 1/2 O2(g) CO(g) Ka b.) CO(g) + 1/2 O2(g) CO2(g) Kb

Answers

Answer:

A. Ka = [CO2] / [C] [O2]^1/2

B. Kb = [CO2] / [CO] [O2]^1/2

Explanation:

Equilibrium constant is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, we shall obtain the expression for the equilibrium constant for the reaction as follow:

A. Determination of the expression for equilibrium constant Ka.

This is illustrated below:

C(s) + 1/2 O2(g) <==> CO(g)

Ka = [CO2] / [C] [O2]^1/2

B. Determination of the expression for equilibrium constant Kb.

This is illustrated below:

CO(g) + 1/2 O2(g) <==> CO2(g)

Kb = [CO2] / [CO] [O2]^1/2

Of the following two gases, which would you predict to diffuse more rapidly? PLZZ HELPP PLZ PLZ PLZ

Answers

Answer:

CO2 will diffuse more rapidly.

Explanation:

From Graham's law of diffusion, we understood that the rate of diffusion of a gas is inversely proportional to the square root of its density as shown below:

Rate (R) & 1/√Density (d)

R & 1/√d

But, the density of a gas is directly proportional to the relative molecular mass (M) of the gas.

Thus, we can say that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. This can be represented mathematically as:

Rate (R) & 1/√Molar mass (M)

R & 1/√M

From the above illustration, we can say that the lighter the gas, the faster the rate of diffusion and the heavier the gas, the slower the rate of diffusion.

Now, to answer the question given above,let us determine the molar mass of Cl2 and CO2.

This is illustrated below:

Molar mass of Cl2 = 2 x 35.5 = 71 g/mol

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Summary

Gas >>>>>> Molar mass

Cl2 >>>>>> 71 g/mol

CO2 >>>>> 44 g/mol

From the illustration above, we can see that CO2 is lighter than Cl2.

Therefore, CO2 will diffuse more rapidly.

Answer: CO2

Explanation:

A sample of argon gas (molar mass 40 g) is at four times the absolute temperature of a sample of hydrogen gas (molar mass 2 g). Find the ratio of the rms speed of the argon molecules to that of the hydrogen. Assume hydrogen molecule has only translational degree of freedom.

Answers

Answer:

Ratio of Vrms of argon to Vrms of hydrogen = 0.316 : 1

Explanation:

The root-mean-square speed measures the average speed of particles in a gas, and is given by the following formula:  

Vrms = [tex]\sqrt{3RT/M}[/tex]

where R is molar gas constant = 8.3145 J/K.mol, T is temperature in kelvin, M is molar mass of gas in Kg/mol

For argon, M = 40/1000 Kg/mol = 0.04 Kg/mol, T = 4T , R = R

Vrms = √(3 * R *4T)/0.04 = √300RT

For hydrogen; M = 1/1000 Kg/mol = 0.001 Kg/mol, T = T, R = R

Vrms = √(3 * R *T)/0.001 = √3000RT

Ratio of Vrms of argon to that of hydrogen = √300RT / √3000RT = 0.316

Ratio of Vrms of argon to that of hydrogen = 0.316 : 1

For an ideal gas condition, what is the mass (g) of N2 if the pressure is 2.0 atm, the volume is 25 mL and the temperature is 290 Kelvin.

Answers

Answer:

THE MASS OF NITROGEN GAS IN THIS CONDITIONS IS 0.0589 g

Explanation:

In an ideal condition

PV = nRT or PV = MRT/ MM where:

M = mass = unknown

MM =molar mass = 28 g/mol

P = pressure = 2 atm

V = volume = 25 mL = 0.025 L

R = gas constant = 0.082 L atm/mol K

T = temperature = 290 K

n = number of moles

The gas in the question is nitrogen gas

Molar mass of nitrogen gas = 14 * 2 = 28 g/mol

Then equating the variables and solving for M, we have

M = PV MM/ RT

M = 2 * 0.025 * 28 / 0.082 * 290

M = 1.4 / 23.78

M = 0.0589 g

The mass of the nitrogen gas at ideal conditions of 2 atm, 25 mL volume and 290 K temperature is 0.0589 g

Find the density if the volume is 15 mL and the mass is 8.6 g. (5 pts)
Find the volume if the density is 2.6 g/mL and the mass is 9.7 g.(5 pts)
Find the mass if the density is 1.6 g/cm3 and the volume is 4.1 cm3 (5 pts)
Find the density if the initial volume of water is 12.8 mL, the final volume is 24.6 mL and the mass of the object is 4.3 g. Make a drawing to show the water displacement using a graduated cylinder. (gdoc, gdraw)

Answers

Answer:

[tex]\large \boxed{\text{0.57 g/mL; 3.7 mL; 6.6 g; 0.366 g/mL}}[/tex]

Explanation:

1. Density from mass and volume

[tex]\text{Density} = \dfrac{\text{mass}}{\text{volume}}\\\\\rho = \dfrac{m}{V}\\\\\rho = \dfrac{\text{8.6 g}}{\text{15 mL}} = \text{0.57 g/mL}\\\text{The density is $\large \boxed{\textbf{0.57 g/mL}}$}[/tex]

2. Volume from density and mass

[tex]V = \text{9.7 g}\times\dfrac{\text{1 mL}}{\text{2.6 g}} = \text{3.7 mL}\\\\\text{The volume is $\large \boxed{\textbf{3.7 mL}}$}[/tex]

3. Mass from density and volume

[tex]\text{Mass} = \text{4.1 cm}^{3} \times \dfrac{\text{1.6 g}}{\text{1 cm}^{3}} = \textbf{6.6 g}\\\\\text{The mass is $\large \boxed{\textbf{6.6 g}}$}[/tex]

4. Density by displacement

Volume of water + object = 24.6 mL

Volume of water                = 12.8 mL

Volume of object               = 11.8 mL

[tex]\rho = \dfrac{\text{4.3 g}}{\text{11.8 mL}} = \text{0.36 g/mL}\\\text{The density is $\large \boxed{\textbf{0.36 g/mL}}$}[/tex]

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.

 

3. Identify the reagents you would use to convert 1-bromopentane into each of the following compounds: (a) Pentanoic acid (b) Hexanoic acid (c) Pentanoyl chloride (d) Hexanamide (e) Pentanamide (f) Ethyl hexanoate

Answers

Answer:

Explanation:

a )

CH₃CH₂CH₂CH₂CH₂Br + KOH   ⇒ CH₃CH₂CH₂CH₂CH₂OH

CH₃CH₂CH₂CH₂CH₂OH  + acidic potassium dichromate ⇒  CH₃CH₂CH₂CH₂COOH

b )

CH₃CH₂CH₂CH₂CH₂Br + KCN ⇒ CH₃CH₂CH₂CH₂CH₂CN  Hydrolysis ⇒ CH₃CH₂CH₂CH₂CH₂COOH .

c )

CH₃CH₂CH₂CH₂CH₂Br + KOH   ⇒ CH₃CH₂CH₂CH₂CH₂OH

CH₃CH₂CH₂CH₂CH₂OH  + acidic potassium dichromate ⇒  CH₃CH₂CH₂CH₂COOH + SOCl₂ ( thionyl  chloride ) ⇒ CH₃CH₂CH₂CH₂COCl

d )

CH₃CH₂CH₂CH₂CH₂Br + KCN ⇒ CH₃CH₂CH₂CH₂CH₂CN  Hydrolysis ⇒ CH₃CH₂CH₂CH₂CH₂COOH + PCC ( NH₃ ) ⇒ CH₃CH₂CH₂CH₂CH₂CONH₂

e )

CH₃CH₂CH₂CH₂CH₂Br + KCN ⇒ CH₃CH₂CH₂CH₂CH₂CN  Hydrolysis ⇒ CH₃CH₂CH₂CH₂CH₂COOH + C₂H₅OH ( Ethyl alcohol + H⁺ )⇒  

CH₃CH₂CH₂CH₂CH₂COOC₂H₅ ( ethyl hexanoate )

Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______

Answers

Answer:

Explanation:

A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.

Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is

2-hydroxy-2,3-dimethylbutane

     H  OH   H    H

      |     |       |      |

H - C - C -   C  - C - H

      |     |       |      |

     H  CH₃  CH₃ H

From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain

The substance formed on addition of water to an aldehyde or ketone is called a hydrate or a/an:_______
A) vicinal diol
B) geminal diol
C) acetal
D) ketal

Answers

Answer:

B) geminal diol

Explanation:

Hello,

In this case, considering the attached picture, you can see that the substance resulting from the hydrolysis of an aldehyde or a ketone is a geminal diol since the two hydroxyl groups are in the same carbon. Such hydrolysis could be carried out in either acidic or basic conditions depending upon the equilibrium constant.

Regards.

Aqueous potassium nitrate (KNO3) and solid silver bromide are formed by the reaction of aqueous potassium bromide and aqueous silver nitrate (AgNO3). Write a balanced chemical equation for this reaction

Answers

Answer:

For the mentioned reaction, the balanced chemical equation is:  

KBr (aq) + AgNO3 (s) ⇒ KNO3 (aq) + AgBr (s)

The number written in front of the ion, atoms, and molecules in a chemical reaction so that each of the elements on both the sides of reactants and products of the equation gets balanced is known as the stoichiometric coefficient.  

From the mentioned balanced equation, the stoichiometric coefficient before KBr is 1, AgNO3 is 1, KNO3 is 1, as well as before AgBr is also 1. Thus, it is clear that 1 mole of potassium bromide reacts with 1 mole of silver nitrate to produce 1 mole of potassium nitrate and 1 mole of silver bromide.  

Which of the following pieces of information is given in a half-reaction?
O A. The number of electrons transferred in the reaction
B. The compounds that the atoms in the reaction came from
C. The state symbol of each compound in the reaction
D. The spectator ions that are involved in the reaction

Answers

Answer:

The number of electrons transferred in the reaction

Explanation:

Answer:

A

Explanation:

What are the correct half reactions for the following reaction: Cu2+ + Mg -> Cu + Mg2+

Answers

Answer:

Cu2 + 2Mg-> 2Cu+ Mg2

Explanation:

Balance the equation and make sure both the reactant and the products are the same

Hope it will be helpful

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex]  is the correct half-reactions.

What is a balanced equation?

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total oxidation numbers is the same for both the reactants and the products.

[tex]Cu^{+2} + 2Mg[/tex]  -> [tex]2Cu + Mg^+2[/tex] is the correct half-reactions.

Magnesium is oxidized because its oxidation state increased from 0 to +2 while Cu is reduced because its oxidation state decreased from +2 to 0.

Learn more about balanced equations here:

brainly.com/question/15052184

#SPJ5

Arrange the compounds in order of decreasing magnitude of lattice energy:


a. LiBr

b. KI

c. CaO.


Rank from largest to smallest.

Answers

Answer:

The correct answer is CaO > LiBr > KI.

Explanation:

Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.  

With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.  

The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.  

Arranging the chemical compounds in order of decreasing magnitude of lattice energy, we have:

c. CaO.

a. LiBr

b. KI

Lattice energy can be defined as a measure of the energy required to dissociate one (1) mole of an ionic compound into its constituent anions and cations, in the gaseous state.

Hence, it is typically used to measure the bond strength of ionic compounds.

Generally, lattice energy is inversely proportional to the size of the ions and directly proportional to their electric charges.

Lithium bromide (LiBr) comprises the following ions:

[tex]Li^+[/tex] and [tex]Br^-[/tex]

Potassium iodide (KI) comprises the following ions:

[tex]K^+[/tex] and [tex]I^-[/tex]

Calcium oxide (CaO) comprises the following ions:

[tex]Ca^{2+}[/tex] and [tex]O^{2-}[/tex]

From the above, we can deduce that there is an increase in the charge possessed by the ionic chemical compounds and as such this would result in an increase in the lattice energy.

In order of decreasing magnitude of lattice energy, the chemical compounds are arranged as:

I. CaO.

II. KI.

III. LiBr.

Read more: https://brainly.com/question/24605723

When the nuclide bismuth-210 undergoes alpha decay:
The name of the product nuclide is_____.
The symbol for the product nuclide is_____
Fill in the nuclide symbol for the missing particle in the following nuclear equation.
_____ rightarrow 4He+ 234Th
2 90
Write a balanced nuclear equation for the following:
The nuclide radium-226 undergoes alpha emission.

Answers

Explanation:

An atom undergoes alpha decay by losing a helium atom.

So when bismuth undergoes alpha decay, we have;

²¹⁰₈₃Bi --> ⁴₂He + X

Mass number;

210 = 4 + x

x = 206

Atomic number;

83 = 2 + x

x = 81

The element is Thallium. The symbol is Ti.

For the second part;

X --> ⁴₂He + ²³⁴₉₀Th

Mass number;

x = 4 + 234 = 238

Atomic Number;

x = 2 + 90 = 92

The balanced nuclear equation is;

²³⁸₉₂U --> ⁴₂He + ²³⁴₉₀Th

A solution is known to contain only one type of cation. Addition of Cl1- ion to the solution had no apparent effect, but addition of (SO4)2- ion resulted in a precipitate. Which cation is present

Answers

Answer:

We can have: Calcium, strontium, or barium

Explanation:

In this case, we have to remember the solubility rules for sulfate [tex]SO_4~^-^2[/tex] and the chloride [tex]Cl^-[/tex]:

Sulfate

All sulfate salts are SOLUBLE-EXCEPT those also containing: Calcium, silver, mercury (I), strontium, barium or lead.([tex]Ca^+^2~,Ag^+~,Hg_2^+^2~,Sr^+2~,Ba^+^2~,Pb^+^2[/tex]), which are NOT soluble.

Chloride

All chloride salts as SOLUBLE-EXCEPT those also containing: lead, silver, or mercury (I). ([tex]Pb^+^2~,Ag^+~,Hg_2~^+^2[/tex]), which are NOT soluble.

If we the salt formed a precipitated with the sulfate anion, we will have as possibilities "Calcium, silver, mercury (I), strontium, barium or lead". If We dont have any precipitated with the Chloride anion we can discard "Silver, mercury (I),  lead" and our possibilities are:

"Calcium, strontium, or barium".

I hope it helps!

2. Which one is the odd one
out and why?
o Water
• Hydrogen
Chlorine
o Aluminum

Answers

Answer:

Reaction of Chlorine with Hydrogen Chlorine and Hydrogen mixed together explodes when exposed to sunlight, which produces Hydrogen Chloride. In the dark away from sunlight, no reaction occurs, so light energy is required for a reaction. Cl2 + H2 = 2 HCl Reaction of Chlorine with Non-Metals Chlorine directly combines with most non-metals.

Explanation:

I hope this helps bro

What is the rate constant of a reaction if rate = 1 x 10-2 (mol/L)/s, [A] is 2 M,
[B] is 3 M, m = 2, and n = 1?

Answers

Answer:

[tex]0.10 \text{ L$^2$mol$^{-2}$s$^{-1}$}[/tex]

Explanation:

The general formula for a rate law is

[tex]\text{rate} = k\text{[A]}^m \text{[B]}^{n}[/tex]

With your numbers, the rate law becomes

1.2 mol·L⁻¹s⁻¹ = k(2 mol·L⁻¹)²(3 mol·L⁻¹)¹ = k × 4 mol²L⁻² × 3 mol·L⁻¹

= 12k mol³L⁻³

[tex]\\ k = \dfrac{\text{1.2 mol $\cdot$ L$^{-1}$s$^{-1}$} }{12\text{ mol$^{3}$L}^{-3}} = \mathbf{0.10} \textbf{ L$\mathbf{^2}$mol$^{\mathbf{-2}}$s$^{\mathbf{-1}}$}[/tex]

Consider the following reaction: 2Fe2+(aq) + Cu2+ --> 2Fe3+(aq) + Cu. When the ion concentrations change to the point where the reaction comes to equilibrium, what would be the cell voltage?

Answers

Answer:

At equilibrium, the cell voltage is zero volts.

Explanation:

During an electrochemical reaction, electrical energy is produced. The reaction continues to produce electrical energy until a point is reached in which the reaction attains equilibrium.

Before the reaction attains equilibrium, the cell voltage continues to decrease progressively as the reaction progresses. At equilibrium, the cell voltage becomes zero and the read out voltmeter records 0 V.

Hence, at equilibrium, the cell voltage is zero volts.

What is the molarity of 4 g of NaCl dissolved in 100mL of water?

Answers

Answer:

[tex]M=0.684M[/tex]

Explanation:

Hello,

In this case, considering that the solution is formed by NaCl as the solute and water as the solvent, we can compute the molarity as shown below:

[tex]M=\frac{mol_{solute}}{V_{solution}}[/tex]

Whereas the volume of the solution must be in liters. In such a way, since the addition of sodium chloride does not significantly changes the volume of the solution we can say it remains in 100 mL (0.100 L) and the moles of sodium chloride are computed by using its molar mass (58.45 g/mol):

[tex]mol_{solute}=4g*\frac{1mol}{58.45g} =0.0684mol[/tex]

Therefore, the molarity is:

[tex]M=\frac{0.0684mol}{0.100L} \\\\M=0.684\frac{mol}{L}=0.684M[/tex]

Regards.

While balancing a chemical equation, we change the _____ to balance the number of atoms on each side of the equation.

Answers

Answer:

While balancing a chemical equation, we change the coefficient  to balance the number of atoms on each side of the equation

Explanation:

While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

What is chemical equation?

To summarize in chemistry terms, a chemical equation depicts the initial chemicals, or reactants, on the left-hand side and the final compounds, or products, just on right-hand side, divided by an arrow. In the chemical equation, the number of atoms in each element as well as the total charge are the same on opposite of the equation's sides.

Chemical equations are used in chemistry to depict chemical processes by writing the reactants and products in terms of their corresponding chemical formulas. While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

Therefore, while balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

To know more about chemical equation, here:

https://brainly.com/question/29028257

#SPJ6

A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050 M LiC2H3O2. Which of the following actions will destroy the buffer?

A. adding 0.050 moles of NaOH
B. adding 0.050 moles of LiC2H3O2
C. adding 0.050 moles of HC2H3O2
D. adding 0.050 moles of HCl
E. None of the above will destroy the buffer.

Answers

Answer:

D

Explanation:

Addition of 0.05 M HCl, will react with all of the C2H3O2- from LiAc which will give 0.05 M more HAc. So there will be no Acetate ion left to make the solution buffer. Hence, the correct option for the this question is d, which is adding 0.050 moles of HCl.

The action that destroys the buffer is option c. adding 0.050 moles of HCl.

What is acid buffer?

It is a solution of a weak acid and salt.

Here, The buffer will destroy at the time when either HC2H3O2 or NaC2H3O2 should not be present in the solution.

The addition of equal moles of HCl finishly reacts with equal moles of NaC2H3O2. Due to this,  there will be only acid in the solution.

Since

moles of HC2H3O2 = 1*0.250 = 0.250

moles of NaC2H3O2 = 1*0.050 = 0.050.

moles of HCl is added = 0.050

Now

The reaction between HCl and NaC2H3O2

[tex]HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl[/tex]

Now

BCA table is

            NaC2H3O2  HCl       HC2H3O2

Before 0.050 0.050 0.250

Change -0.050 -0.050 +0.050

After 0 0 0.300

Now, the solution contains the acid (HC2H3O2 ) only.

Therefore addition of 0.050 moles of HCl will destroy the buffer.

Learn more about moles here: https://brainly.com/question/24817060

What can you learn about the pH of a substance with the conductivity test? hint: gives you no info on concentration.

Answers

Answer:

See explanation

Explanation:

So, I'm gonna take a shot at this one and say this:

With a strongly acidic/basic solution, you'll get a high conductivity when preforming a conductivity test.

The more acidic or basic a substance is, the higher the electrical conductivity.

Based on how high or low the conductivity is, it will give you an idea of the substance's pH.

Hope that made since or gave you an idea of what you're looking for. Good luck :)

Determine whether the following statement about equilibrium is true or false.
(a) When a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants.
(b) When a system is at equilibrium, Keq = 1.
(c) At equilibrium, the rates of the forward reaction and the reverse reaction are equal.
(d) Adding a catalyst to a reaction system will shift the position of equilibrium to the right so there are more products at equilibrium than if there was no catalyst present.

Answers

Answer:

(a) when a reaction system reaches a state of equilibrium, the concentration of the products is equal to the concentration of the reactants

Determining whether the statements about equilibrium is True or False

A) The concentration of the products is equal to the concentration of the reactants at equilibrium : TRUE

B) When a system is at equilibrium, Keq = 1 : TRUE

C) The rates of the forward reaction and the reverse reaction are equal at equilibrium :  TRUE

D) Adding a catalyst to a reaction system will shift the position of equilibrium to the right : FALSE

Reaction at equilibrium

In a chemical reaction at equilibrium the value of Keq will be equal to 1 because the concentration of the products is equal to the concentration of the reactants in the chemica reaction. Also at equilibrium the rate of forward reaction is same as the rate of reverse reaction.

A catalyst can only affect the rate of reaction and not the amount of product ( yield of reaction).

Hence we can conclude that the answers to your questions are as listed above.

Learn more about Equilibrium : https://brainly.com/question/517289

#SPJ2

Write a balanced nuclear equation for the following: The nuclide thorium-234 undergoes beta decay to form protactinium-234 .

Answers

Answer:

²³⁴₉₀Th --> ²³⁴₉₁Pa + ⁰₋₁e

Explanation:

thorium-234 = ²³⁴₉₀Th

beta decay = ⁰₋₁e

protactinium-234 = ²³⁴₉₁Pa

The balanced nuclear equation is given as;

²³⁴₉₀Th --> ²³⁴₉₁Pa + ⁰₋₁e

An ice cube at 0.00C with a mass of 8.32g is placed Into 55g of water, initially at 25C. If no heat is lost to the surroundings, what is the final temperature of the entire water sample after all the ice is melted (answer must be in 3 sig figs)

Answers

Answer:

The final temperature of the entire water sample after all the ice is melted, is 12,9°C. We should realize that if there is no loss of heat in our system, the sum of lost or gained heat is 0.  It is logical to say that the temperature has decreased because the ice gave the water "heat" and cooled it

Thats all i know

Given the following equivalents, make the following conversion: 1.00 knop = ? knips

4 clips = 5 blips
1 knop = 6 bippy
3 blip = 18 pringle
1 clip = 10 knip
10 bippy = 8 pringle

Answers

Answer:

[tex]6.4knips[/tex]

Explanation:

Hello,

In this case, given the stated equivalences, we can use the following proportional factor in order to compute the required knips:

[tex]knips=1.00knop*\frac{6bippy}{1knop} *\frac{8pringle}{10bippy}* \frac{3blip}{18pringle} *\frac{4clips}{5blips} *\frac{10knip}{1clip} \\\\=6.4knips[/tex]

Regards.

1 knop=6.4 knips

First convert knop to bippy:-

[tex]1\ knop\times\frac{6\ bippy}{1\ knop} =6\ bippy[/tex]

Now, Convert 6 bippy to pringle:-

[tex]6\ bippy\times\frac{8\ pringle}{10\ bippy} =4.8\ pringle[/tex]

Now, convert 4.8 pringle to blip:-

[tex]4.8\ pringle\times\frac{3\ blip}{18\ priangle} =0.8\ blip[/tex]

Now, convert 0.8 blip to clips as follows:-

[tex]0.8\ blip\times\frac{4\ clips}{5\ blip} =0.64\ clip[/tex]

Now, convert 0.64 clip to knips:-

[tex]0.64\ clip\times\frac{10\ knip}{1\ clip} =6.4\ knip[/tex]

Hence, the following conversion is as follows:-

1.00 knop=6.4 knips

To know more about:-

https://brainly.com/question/17229463

The equation represents the decomposition of a generic diatomic element in its standard state. 12X2(g)⟶X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 4.25 kJ·mol−1 at 2000. K and −63.12 kJ·mol−1 at 3000. K. Determine the value of K (the thermodynamic equilibrium constant) at each temperature.

Answers

Answer:

[tex]K^{2000K}=0.774\\\\K^{3000K}=12.56[/tex]

Explanation:

Hello,

In this case, considering the reaction, we can compute the Gibbs free energy of reaction at each temperature, taking into account that the Gibbs free energy for the diatomic element is 0 kJ/mol:

[tex]\Delta _rG=\Delta _fG_{X}-\frac{1}{2} \Delta _fG_{X_2}=\Delta _fG_{X}[/tex]

Thus, at 2000 K:

[tex]\Delta _rG=\Delta _fG_{X}^{2000K}=4.25kJ/mol[/tex]

And at 3000 K:

[tex]\Delta _rG=\Delta _fG_{X}^{3000K}=-63.12kJ/mol[/tex]

Next, since the relationship between the equilibrium constant and the Gibbs free energy of reaction is:

[tex]K=exp(-\frac{\Delta _rG}{RT} )[/tex]

Thus, at each temperature we obtain:

[tex]K^{2000K}=exp(-\frac{4250J/mol}{8.314\frac{J}{mol\times K}*2000K} )=0.774\\\\K^{3000K}=exp(-\frac{-63120J/mol}{8.314\frac{J}{mol\times K}*3000K} )=12.56[/tex]

In such a way, we can also conclude that at 2000 K reaction is unfavorable (K<1) and at 3000 K reaction is favorable (K>1).

Best regards.

Need help with chemistry questions

Answers

Answer:

1. oxidation

2. reduction

3. oxidation

4. oxidation

Explanation:

Oxidation and Reduction in terms of hydrogen

Oxidation and Reduction with respect to Hydrogen Transfer. Oxidation is the loss of hydrogen. Reduction is the gain of hydrogen.

Oxidation and Reduction in terms of Oxygen

Oxidation and Reduction with respect to Oxygen Transfer. Oxidation is the gain of Oxygen. Reduction is the loss of Oxygen.
Other Questions
Select the correct answer. What is the mood of this excerpt from "The Open Boat" by Stephen Crane? The January water was icy, and he reflected immediately that it was colder than he had expected to find it off the coast of Florida. This appeared to his dazed mind as a fact important enough to be noted at the time. The coldness of the water was sad; it was tragic. This fact was somehow so mixed and confused with his opinion of his own situation that it seemed almost a proper reason for tears. The water was cold. A. overwhelmed B. optimistic C. condescending D. grateful E. expectant i need help knowing if i did this right or not. im supposed to use spanish adjectives (as many as possible) in describing 3 people . The people are shakira , antonio banderas, letizia, la princesa de spana. what i have so far is.. Le chica es modelo. Le chica es bonita. le chica es delgado. le chica es hormosa. Le chica es joven . Le chica es pequeno. I havent done the other 2 yet b/c i didnt know if i was doing this right or not The probability distribution of number of televisions per household in a small town is given below.x 0 1 2 3 P(x) 0.05 0.15 0.25 0.55a. Find the probability of randomly selecting a household that has one or two televisions.b. Find probability of randomly selecting a household that has one or two televisions When an object falls toward the ground due to gravity, what type of energy becomes kinetic energy? Who is the story about? Who else is included in the story? Why does the main character act a certain way? the story is: "A Retrieved Reformation" tan 21 degrees = 9/x Point B lies between points A and C, and all three points lie on point AC, which of the following is not true? A. Point B lies on segment AC B. Point C lies on ray AB C. Point A lies on ray BC D. Point C lies on line AB Jullian measures the distance he drives to work each day using the odometer on his car, which measures distance in miles, accurate to the nearest tenth of a mile. Using that measurement, he claims that the exact distance he drives to work is 11.7 miles. Use complete sentences to explain why jullian is incorrect Suppose that in 1969, the U.S. economy was operating close to potential. The budget deficit experienced by the United States in 1969 was: Is it enough to be "suspected" of terrorism, or should these suspects have the right to a fair trial before being detained indefinitely? In which exchange rate system is the exchange rate determined entirely by the supply of and demand for a currency convert degree into Radian that is 18 degree 12' A piece of buttered toast falls to the floor 17 times. The toast landed buttered side up 6 times. What is the probability that the toast lands buttered side down? what is the perimeter of rhombus ABCD ? What is the slope of the line shown below? A. -3/2B. 3/2C. 2/3D. -2/3 In the Ancient Greek tragedy, Antigone, the main character Antigone arrives in Thebes to prevent a prophecy that predicts her brothers will kill each other in battle. She arrives to find that she is too late; her brothers are already dead and her uncle, King Creon, has forbidden the burial of her brother Polyneices, having decided that he was a traitor. Antigone defies her uncles orders and buries her brother anyway. In fury, Creon throws her in jail, but is soon convinced by others to release her. Creon goes to the jail to give Antigone her freedom, but finds that she is dead, having killed herself in despair. Which is the falling action of Antigone? Antigone's decision to defy Creon's orders and bury her brother Creon's decision to pardon Antigone and release her from jail Creon's discovery that Antigone has hanged herself in her jail cell The battle between the two brothers which resulted in their deaths If you have $100 in a savings account earning 3% interest per year, how much will you have intwo years? Assume that you are an intern with the Brayton Company, and you have collected the following data: The yield on the company's outstanding bonds is 7.75%; its tax rate is 40%; the next expected dividend is $0.65 a share; the dividend is expected to grow at a constant rate of 6.00% a year; the price of the stock is $15.00 per share; the flotation cost for selling new shares is F = 10%; and the target capital structure is 45% debt and 55% common equity. What is the firm's WACC, assuming it must issue new stock to finance its capital budget? What does benethas hair most likely symbolize? Raisin in the sun what is physics and important of physics