Answer:
frequency is approximately 11.5 µHz, or more exactly, 11.5740740e-6 Hz
Explanation:
Determine how would the frequency of the pendulum change if it was taken to the moon by finding the ratio of its frequency on the moon fM to its frequency on the earth fE. Suppose that gE is the free-fall acceleration on the earth and gM is the free-fall acceleration on the moon.
Express your answer in terms of some or all of the variables l, m, gE, gM.
fM/fE = ?
For the pendulum taken to the moon, The frequency change that would occur is mathematically given as
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
What frequency change would occur to the pendulum if it was taken to the moon?Generally, the equation for the Time period is mathematically given as
[tex]T=2\pi\sqrt{L/g}[/tex]
Therefore
[tex]\frac{Fmoon}{Fearth}=\frac{\sqrt{g/6L}}{\sqrt{g/6L}}\\\\\frac{Fmoon}{Fearth}=\sqrt{1/6}[/tex]
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
In conclusion, The frequency change
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
Read more about frequency
https://brainly.com/question/24623209
Answer:
.408
Explanation:
Please help I’ll mark you brainliest
Answer:
Percentage:
Rr = 50% because it's 2/4 (for both or 25% each since you have them separate)
rr = also 50%, because it's also 2/4.
Phenotype:
Rr = heterozygous
rr = "hozygous" recessive
In addition, RR is "hozygous" dominant
Explanation:
They said the hozygous is a swearword LOL.
two 0.5 kg carts, one red and one green, sit about half a meter apart on a low friction track, you push on the red one with the constant force of 4N for 0.17m and then remove your hand. the cart moves 0.33 m on the track and then strikes the green cart. what is the work done by you on the two cart system?
Answer:
The work done by you on the two cart system is 2 N-m
Explanation:
Work done is the product of force and displacement.
W = F * D
Substituting the given values we get -
W =
[tex]4 * (0.17+0.33)\\= 2[/tex]
The work done by you on the two cart system is 2 N-m
Plz help w answer 1:/ confused ash
Answer:
I would say d I had the same question yesterday and I got it correct so hope that helps
In addition to producing images, ultrasound can be used to heat tissues of the body for therapeutic purposes. An emitter is placed against the surface of the skin; the amplitude of the ultrasound wave at this point is quite large. When a sound wave hits the boundary between soft tissue and bone, most of the energy is reflected. The boundary acts like the closed end of a tube which can lead to standing waves. Suppose 0.7 MHz ultrasound is directed through a layer of tissue at a bone 0.55 cm below the surface. Remember, sound waves in the body travel at 1540 m/s. Explain.
Answer:
ΔT = 4.058 10²⁰ [tex]\frac{S_o^2}{r^2 \ c_e}[/tex]
Explanation:
In this experiment the system can be approximated as a tube with one end open and the other closed.
The open end is where the ultrasound emitter is and the closed end where the limit between the tissue and the bone is, the length of the tube is L = 0.55 cm = 5.5 10⁻³ m
a node is formed at the closed end and a belly at the open end, so the resonance has the form
λ = 4L 1st harmonic
λ = 4/3 L third harmonic
λ = 4/5 L fifth harmonic
λ = 4L / (2n + 1) n = 0, 1, 2, (2n + 1)
This wave is a standing wave therefore energy density remains in place
P = 1/2 ρ v (w S₀)²
angular velocity is related to frequency
w = 2π f
we substitute
E = P = 2π² ρ v f² S₀²
if this energy per unit area is transformed into heat
E = m c_e DT
let's use the concept of density
ρ = m / V
m = ρ V
if there are no losses in the system
½ π² ρ v f² S₀² = ρ V c_e ΔT
ΔT = [tex]\frac{\pi ^2 \ v \f^2 S_o^2}{2V \ c_e}[/tex]
When analyzing this expression the temperature increase is
* quadratic at the frequency and maximum amplitude of the wave
* proportional to the speed of the wave in the tissue
* inversely proportional to tissue volume
we can approximate the volume of the tissue to the volume of a cylinder tube
V = π r² L
ΔT = [tex]\frac{\pi \ v \ f^2 S_o^2 }{r^2 \ L \ c_e}[/tex]
we calculate
ΔT = π 1450 (0.7 10⁶)² S₀² /( r² 5.5 10-3 c_e)
ΔT = 4.058 10²⁰ [tex]\frac{S_o^2}{r^2 \ c_e}[/tex]
When a narrow laser beam passes through a fine wire mesh before arriving at the wall, it forms a complicated pattern of bright spots on the wall. This pattern of spots would not occur if you sent a flashlight beam through the mesh because light from the flashlight is not a single electromagnetic wave. cannot be sent through a single opening of the mesh. is horizontally polarized, while laser light is vertically polarized. is vertically polarized, while laser light is horizontally polarized.
Answer:
this pattern to occur there must be coherence in the light beams.
you use a flashlight, the rays are incoherent so diffraction patterns cannot occur.
Explanation:
The point pattern that appears in the wall is the result of the interference and diffraction processes through each space of the mesh, for this pattern to occur there must be coherence in the light beams.
The coherence process is that all the rays have the same constant and phase, before the appearance of the lasers, the light is stopped by a small opening and this ray is the one that passes through the slits, with the appearance of the laser this it is consistent from its production process, so opening is not necessary, with this there is much greater intensity and the measurement process is simplified.
When you use a flashlight, the rays are incoherent so diffraction patterns cannot occur.
Polarization has no effect on diffraction patterns so it does not matter if it is vertical or horizontal.
Stars that are not very hot but give off a lot of light are
O nebula
O main sequence stars
giants
O giants
O dwarfs
[tex]\huge{\textbf{\textsf{{\color{navy}{An}}{\purple{sw}}{\pink{er}} {\color{pink}{:}}}}}[/tex]
Giants.
thankshope it helps.Explanation:
giants are those stars that are not so hot but give a lot of light
What is the centripetal force for a roller coaster if the mass is 10 kg and the normal force is 25 N?
Answer:
Fc = 123 Newton
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
[tex] Fnet = Fapp + Fg[/tex]
Where;
Fnet is the net force.
Fapp is the applied force.
Fg is the force due to gravitation.
Given the following data;
Normal force = 25N
Mass = 10kg
To find the centripetal force;
From the net force, we have the following formula;
Fc = N + mg
Where;
Fc is the centripetal force.
N is the normal force.
mg is the the weight of the object.
Substituting into the formula, we have;
Fc = 25 + 10(9.8)
Fc = 25 + 98
Fc = 123 Newton
the density of brick is 1,600 kg/m3. what is the mass of a brick with a volume of 0.0006 m3? WILL MARK BRAINLIEST
Answer:
.0000004
Explanation:
The mass of a brick with a volume of 0.0006 m³ and a density of 1600 kg/m³ is 0.96kg.
HOW TO CALCULATE MASS?The mass of a substance can be calculated by multiplying the density of the substance by its volume. That is;
Mass = density × volume
According to this question, the density of brick is 1,600 kg/m3 and it has a volume of 0.0006m³. The mass is calculated as follows:
Mass = 0.0006 × 1600
Mass = 0.96kg
Therefore, the mass of a brick with a volume of 0.0006m³ and a density of 1600 kg/m³ is 0.96kg.
Learn more about mass at: https://brainly.com/question/19694949
A spring is hung from the ceiling. When a coffee mug is attached to its end, it stretches 2.5 cm before reaching its new equilibrium length. The block is then pulled down slightly and released. What is the frequency of oscillation
Answer:
Explanation:
In equilibrium , weight of mug is equal to restoring force .
mg = kx where m is mass of mug , k is spring constant and x is extension .
k / m = g / x = 9.8 ms⁻² / .025 m
= 392
frequency of oscillation n = [tex]\frac{1}{2\pi}\sqrt{\frac{k}{m} }[/tex]
[tex]n=\frac{1}{2\pi}\sqrt{392 }[/tex]
= 4.46 per second.
b
Jasmine plays a note of wavelength 22 cm on her clarinet. The speed of
sound in air is 340 m/s. What is the frequency of this note? Give your
answer to 3 significant figures.
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation: [tex]f=\frac{v}{\lambda}[/tex]
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:
[tex]f=\frac{340}{0.22} \\\\f=1545.454...[/tex]
Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!
Which diagram shows magnets that will attract each other? 2 bar magnets side by side with their long axes vertical, both red S on top and blue N on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with blue N on top and red S on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with blue N on top and red S on bottom and the bottom magnet with red S on top and blue N on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with red S on top and blue N on bottom.
2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with red S on top and blue N on bottom. this diagram shows magnets that will attract each other. Hence option D is correct.
What is Magnet ?A permanent magnet is an item constructed of magnetised material that generates its own persistent magnetic field. A refrigerator magnet, for example, is commonly used to hold notes on a refrigerator door. Ferromagnetic (or ferrimagnetic) materials are those that can be magnetised and are strongly attracted to a magnet. These include the elements iron, nickel, and cobalt, as well as their alloys, some rare-earth metal alloys, and naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones that are strongly attracted to a magnet and are widely thought to be magnetic, all other substances respond weakly to a magnetic field via one of many different forms of magnetism.
Hence option D is correct.
To know more about magnet :
https://brainly.com/question/21974887
#SPJ3.
8. Consider a capacitor that is made of two large conducting plates that are rectangular in shape (1 cm by 6 cm), aligned parallel to each other, and separated by an air-filled gap of 0.001 cm. This capacitor is included in a circuit where a battery provides 15,000 V of potential difference. When the capacitor is fully charged in this circuit, what is the c
Answer: [tex]7.96\ \mu C[/tex]
Explanation:
Given
The dimension of the plate is [tex]1\ cm\times 6\ cm[/tex]
The gap between the plate is [tex]0.001\ cm[/tex]
Voltage applied [tex]V=15,000\ V[/tex]
The capacitance of the capacitor is
[tex]C=\dfrac{\epsilon_o A}{d}\\\\C=\dfrac{8.85\times 10^{-12}\times 1\times 6\times 10^{-4}}{10^{-5}}\\\\C=53.1\times 10^{-11}\ F[/tex]
Charge acquired by the capacitor
[tex]\Rightarrow Q=CV\\\Rightarrow Q=53.1\times 10^{-11}\times 15,000\\\Rightarrow Q=796.5\times 10^{-8}\\\Rightarrow Q=7.96\times 10^{-6}\ C[/tex]
A diver comes off a board with arms straight up and legs straight down, giving her a moment of inertia about her rotation axis of 18kg⋅m2. She then tucks into a small ball, decreasing this moment of inertia to 3.6kg⋅m2. While tucked, she makes two complete revolutions in 1.2s.
Required:
If she hadn't tucked at all, how many revolutions would she have made in the 1.5 s from board to water?
Answer:
θ₁ = 0.5 revolution
Explanation:
We will use the conservation of angular momentum as follows:
[tex]L_1=L_2\\I_1\omega_1=I_2\omega_2[/tex]
where,
I₁ = initial moment of inertia = 18 kg.m²
I₂ = Final moment of inertia = 3.6 kg.m²
ω₁ = initial angular velocity = ?
ω₂ = Final Angular velocity = [tex]\frac{\theta_2}{t_2} = \frac{2\ rev}{1.2\ s}[/tex] = 1.67 rev/s
Therefore,
[tex](18\ kg.m^2)\omega_1 = (3.6\ kg.m^2)(1.67\ rev/s)\\\\\omega_1 = \frac{(3.6\ kg.m^2)(1.67\ rev/s)}{(18\ kg.m^2)}\\\\\omega_1 = \frac{\theta_1}{t_1} = 0.333\ rev/s\\\\\theta_1 = (0.333\ rev/s)t_1[/tex]
where,
θ₁ = revolutions if she had not tucked at all = ?
t₁ = time = 1.5 s
Therefore,
[tex]\theta_1 = (0.333\ rev/s)(1.5\ s)\\[/tex]
θ₁ = 0.5 revolution
What is the answer to this problem
Answer:
Material that allow the electrons to move freely in order to produce a current
Please mark as brainliest if answer is right
Have a great day, be safe and healthy
Thank u
XD
use a trigonometric equation to determine the leg of this triangle
C=90°
A=30°
c=10m
What is a?
Answer: 5
Explanation: B is for sure 60°, c* cosB = 10*1/2 =5
what heat transfer occurs when warm air rises
A boy is pulling a sled with a net force of 10 N. If the mass of the sled is 20 kg, what is the acceleration of the sled?
Answer:
0.5 m/s
Explanation:
acceleration= force times mass
Given the amount of force applied on the sled as well as its mass, the acceleration of the sled is 0.5m/s².
What is force?A force is simply referred to as either a push or pull of an object resulting from the object's interaction with another object.
From Newton's Second Law, force is expressed as;
F = m × a
Where is mass of object and a is the acceleration
Given the data in the question;
Force applied F = 10N = 10kgm/s²Mass of the sled = 20kgAcceleration a = ?F = m × a
10kgm/s² = 20kg × a
a = 10kgm/s² ÷ 20kg
a = 0.5m/s²
Given the amount of force applied on the sled as well as its mass, the acceleration of the sled is 0.5m/s².
Learn more about force here: brainly.com/question/27196358
#SPJ2