Assuming that you start with 21.4 g of ammonia gas and 18.0 g of sodium metal and assuming that the reaction goes to completion, determine the mass (in grams) of each product.

Answers

Answer 1

Answer:

[tex]m_{NaNH_2}=30.42gNaNH_2[/tex]

[tex]m_{H_2}=0.783gH_2[/tex]

Explanation:

Hello,

In this case, the reaction between sodium and ammonia is:

[tex]2Na+2NH_3\rightarrow 2NaNH_2+H_2[/tex]

Thus, as we know the initial masses of both sodium and ammonia, we should first identify the limiting reactant, for which we firstly compute the available moles of sodium:

[tex]n_{Na}=18.0gNa*\frac{1molNa}{23.0gNa}=0.783molNa[/tex]

And the moles of sodium consumed by 21.4 g of ammonia (2:2 mole ratio):

[tex]n_{Na}^{\ consumed}=21.4gNH_3*\frac{1molNH_3}{17gNH_3} *\frac{2molNa}{2molNH_3} =1.26molNa[/tex]

In such a way, since less moles of sodium are available than consumed by ammonia, we can say, sodium is the limiting reactant. Furthermore, the mass of both sodium amide (39 g/mol) and hydrogen gas (2 g/mol) that are produced turn out:

[tex]m_{NaNH_2}=0.783molNa*\frac{2molNaNH_2}{2molNa}*\frac{39gNaNH_2}{1molNaNH_2}=30.42gNaNH_2[/tex]

[tex]m_{H_2}=0.783molNa*\frac{1molH_2}{2molNa}*\frac{2gH_2}{1molH_2}=0.783gH_2[/tex]

Best regards.


Related Questions

A balloon has an initial volume of 2.954 L containing 5.50 moles of helium. More helium is added so that the balloon expands to 4.325 L. How much helium (moles) has been added if the temperature and pressure stay constant during this process.

Answers

Answer:

8.05 moles

Explanation:

5.50 / 2.954 = x / 4.325

x = 8.05

According to ideal gas equation, if the temperature and pressure stay constant during the process 0.520 moles have been added  so that the balloon expands to 4.325 L.

What is ideal gas equation?

The ideal gas equation is a equation which is applicable in a hypothetical state of an ideal gas.It is a combination of Boyle's law, Charle's law,Avogadro's law and Gay-Lussac's law . It is given as, PV=nRT where R= gas constant whose value is 8.314.The law has several limitations.The law was proposed by Benoit Paul Emile Clapeyron in 1834.

In the given example if pressure and temperature are constant then V=nR substituting V=4.325 l and R=8.314  so n=V/R=4.325/8.314=0.520 moles.

Thus, 0.520 moles of helium are added if the temperature and pressure stay constant during this process.

Learn more about ideal gas equation,here:

https://brainly.com/question/28837405

#SPJ2

A sample of radioactive silver contains two isotopes, 108Ag (denoted A) and 110Ag (denoted B). The second of these (B) has a half life of 24 seconds, whereas the first (A) has a half life of 2.3 minutes. If a sample contains equal numbers of each of these isotopes at the beginning of an experiment that runs for an hour, which of the following statements is correct?
A. At the end of the hour, isotope B has a greater decay constant λ than isotope A
B. At the end of the hour, isotope A has the same decay constant λ as isotope B
C. At the end of the hour, isotope A has a greater decay constant λ than isotope B

Answers

Answer:

A : At the end of the hour, isotope B has a greater decay constant λ than isotope A

Explanation:

Firstly, we need to understand that radioactive decay follows a first order rate law.

What this means is that we can calculate the radioactive decay constant using the following formula from the half-life

Mathematically;

[tex]t_{1/2}[/tex]  = 0.693/λ

where λ represents the radioactive decay constant.

Rearranging the equation, we can have

λ = 0.693/[tex]t_{1/2}[/tex]

Now, to have a fair level playing ground, it is best that the half-life of both isotopes are in the same unit of time(seconds)

For A, the half-life = 2.3 minutes which is same as 2.3 × 60 = 138 seconds

For B, the half-life is 24 seconds

Thus, at the end of the hour, the decay constant for isotope A will be;

λ = 0.693/138 = 0.0050 [tex]s^{-1}[/tex]

For isotope B, the decay constant will be;

λ = 0.693/24 = 0.028875  [tex]s^{-1}[/tex]

We can see that the decay constant of isotope B is higher than that of A at the end of the experiment

The second-order decomposition of NO2 has a rate constant of 0.255 M-1s-1. How much NO2 decomposes in 8.00 s if the initial concentration of NO2 (1.00 L volume) is 1.33 M

Answers

Answer:

0.9718M

Explanation:

Rate constant, k =  0.255 M-1s-1

time, t = 8.00 s

Initial concentration, [A]o = 1.33 M

Final concentration, [A] = ?

These quantities are represented by the equation;

1 / [A] = 1 / [A]o + kt

1 / [A] = 1 /1.33 + (0.255 * 8)

1 / [A] = 0.7519 + 2.04

[A] = 1 / 2.7919 = 0.3582 M

How much of NO2 decomposed is obtained from the change in concentration;

Change in concentration = Initial - Final

Change = 1.33 - 0.3582 = 0.9718M

A. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
Br(g)
Cl2(g)
I2(g)
F2(g)
B. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
H2S(g)
H2O(g)
H2O2(g)
C. Rank the following substances in order of decreasing standard molar entropy (S∘).
Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.
C(s, amorphous)
C(s, diamond)
C(s, graphite)

Answers

Answer:

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Explanation:

Hello,

In this case, we can apply the following principles to explain the order:

- The greater the molar mass, the larger the standard molar entropy.

- The greater the molar mass and the structural complexity, the larger the standard molar entropy.

- The greater the structural complexity, the larger the standard molar entropy.

A. Rank the following substances in order of decreasing standard molar entropy (S∘).

Rank the gases from largest to smallest standard molar entropy

I2(g)>Br2(g)>Cl2(g)>F2(g)

This is due to the fact that the greater the molar mass, the larger the standard molar entropy.

B. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

H2O2(g)>H2S(g) >H2O(g)

This is due to the fact that the greater the molar mass and the structural complexity, the larger the standard molar entropy as the hydrogen peroxide has four bonds and weights 34 g/mol as well as hydrogen sulfide that has two bonds only.

C. Rank the gases from largest to smallest standard molar entropy. To rank items as equivalent, overlap them.

C(s, amorphous) >C(s, graphite)>C(s, diamond)

Since the molecular complexity is greater in the amorphous carbon (messy arrangement), mid in the graphite and lower in the diamond (well organized).

Regards.

For the following set of pressure/volume data, calculate the new volume of the gas sample after the pressure change is made. Assume that the temperature and the amount of gas remain constant.

a. 125 mL at 755 mm Hg; V =2mL at 780 mm Hg
b. 223 mL at 1.08 atm; V =2mL at 0.951 atm
c. 3.02 L at 103 kPa; V= 2Lat 121 kPa

Answers

Answer:

a. 121 ml, b. 253 ml and c. 2.57 L.

Explanation:

The new volume can be calculated by using the Boyle's law equation:  

P1V1 = P2V2

In the equation, P1 and P2 are the initial and final pressures and V1 and V2 are the initial and final volumes for a real gas at constant temperature.  

a) Based on the given information, P1 = 755 mmHg, V1 = 125 ml, P2 = 780 mm Hg and V2 will be,  

V2 = P1V1/P2

V2 = 755 mmHg × 125 ml/780 mmHg

V2 = 121 ml

b) Based on the given information, P1 = 1.08 atm, V1 = 223 ml, P2 = 0.951 atm and V2 will be,  

V2 = P1V1/P2

V2 = 1.08 atm × 223 ml/0.951 atm

V2 = 253 ml

c) Based on the given information, P1 = 103 kPa, V1 = 3.02 L, P2 = 121 kPa and V2 will be,  

V2 = P1V1/P2

V2 = 103 kPa × 3.02 L/121kPa

V2 = 2.57 L

Calculate the solubility of Mg(OH)2 in water at 25 C. You'll find Ksp data in the ALEKS Data tab. Round your answer to significant digits.

Answers

Answer:

1.12 × 10⁻⁴ M

Explanation:

Step 1: Write the reaction for the solution of Mg(OH)₂

Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)

Step 2: Make an ICE chart

We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.

       Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)

I                                0                    0

C                              +S                +2S

E                                S                  2S

The solubility product constant is:

Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³

S = 1.12 × 10⁻⁴ M

A 25.00 mL sample of unknown concentration of HNO3 solution requires 22.62 mL of 0.02000 M NaOH to reach the equivalence point. What is the concentration of the unknown HNO3 solution

Answers

Answer:The concentration of the unknown HNO3 solution = 0.01809 M

Explanation:

For the acid-base reaction,  HNO3 + NaOH-----> NaN03 + H20

we have that

C1 V1 = C2 V2

Where ,

C1 = concentration of HNO3=?

V1 = volume of HNO3 = 25.00 mL,

V2 = volume of NaOH = 22.62 mL,  

C2 = concentration of NaOH = 0.02000 M

Therefore ,

25.00 mL x C1 = 22.62 mL x 0.02000 M    

 = (22.62 mL / 25.00 mL) x 0.02000 M = 0.01809 M

The concentration of the unknown HNO3 solution = 0.01809 M

Which response has both answers correct? Will a precipitate form when 250 mL of 0.33 M Na 2CrO 4 are added to 250 mL of 0.12 M AgNO 3? [K sp(Ag 2CrO 4) = 1.1 × 10 –12] What is the concentration of the silver ion remaining in solution?

Answers

Answer:

A precipitate will form.

[Ag⁺] = 2.8x10⁻⁵M

Explanation:

When Ag⁺ and CrO₄²⁻ are in solution, Ag₂CrO₄(s) is produced thus:

Ag₂CrO₄(s) ⇄ 2 Ag⁺(aq) + CrO₄²⁻(aq)

Ksp is defined as:

Ksp = 1.1x10⁻¹² = [Ag⁺]² [CrO₄²⁻]

Where the concentrations [] are in equilibrium

Reaction quotient, Q, is defined as:

Q = [Ag⁺]² [CrO₄²⁻]

Where the concentrations [] are the actual concentrations

If Q < Ksp, no precipitate will form, if Q >= Ksp, a precipitate will form,

The actual concentrations are -Where 500mL is the total volume of the solution-:

[Ag⁺] = [AgNO₃] = 0.12M ₓ (250mL / 500mL) = 0.06M

[CrO₄²⁻] = [Na₂CrO₄] = 0.33M × (250mL / 500mL) = 0.165M

And Q = [0.06M]² [0.165M] = 5.94x10⁻⁴

As Q > Ksp; a precipitate will form

In equilibrium, some Ag⁺ and some CrO₄⁻ reacts decreasing its concentration until the system reaches equilibrium. Equilibrium concentrations will be:

[Ag⁺] = 0.06M - 2X

[CrO₄²⁻] = 0.165M - X

Where X is defined as the reaction coordinate

Replacing in Ksp expression:

1.1x10⁻¹² = [0.06M - 2X]² [0.165M - X]

Solving for X:

X = 0.165M → False solution. Produce negative concentrations.

X = 0.0299986M

Replacing, equilibrium concentrations are:

[Ag⁺] = 0.06M - 2(0.0299986M)

[CrO₄²⁻] = 0.165M - 0.0299986M

[Ag⁺] = 2.8x10⁻⁵M

[CrO₄²⁻] = 0.135M

1. Explain what the police siren sounds like to Jane:
2. Explain what the police siren sounds like to John:
3. Explain why the police siren sounds different between Jane and John:

Answers

Answer:

1. the siren has a lower pitch to Jane

2. the siren has a higher pitch to John

3. sound different due to moving away from Jane making the sound wave lengths longer and moving toward John making the wave lengths shorter

Explanation:

The Doppler effect expresses that sound is comparative with the spectator or observer. This is demonstrated valid by the model given with Jane and John. To one individual it could sound low and to someone else it could sound high, in light of where they are tuning in from. To John, the police alarm playing is a higher pitch. Be that as it may, to Jane this equivalent alarm is a totally extraordinary pitch and is heard lower than in comparison to the john.

This is a prime case of the Doppler Effect. They sound distinctive on the grounds that the sound is moving far from Jane making the sound frequencies longer and it is advancing toward John making the frequencies shorter. This impacts how the sound is heard by the human ear.

Which of the following is a half-reaction? A. Zn+CuSO4−> B. 2Cl−−>Cl2+2e− C. H2+1/2O2−>H2O D. −>Cu+ZnSO4

Answers

Answer:

2Cl——>Cl2+2e-

Explanation:

It shows an electron loss or gain

Which solution, if either, would create the higher osmotic pressure (compared to pure water): one prepared from 1.0 g of NaCl in 10 mL of water or 1.0 g of CsBr in 10 mL of water

Answers

Answer: NaCl would give the higher pressure

Explanation:

Osmotic pressure depends only on the number of ions.

NaCl dissociates as Na+ and Cl- ; CsBr  dissociates as Cs+ and Br-

But the concentration of the solutions are different.  

Concentration (morality ) of NaCl = Moles /Litre = (1 g /58.44g/mol)/0.01L

Total number of ions in NaCl solution = 2 x (1 g /58.44g/mol)/0.01L ( 1 mol NaCl gives 2 moles ions, 1 mol Na+ and 1 mol Cl-)  

= 1.71×2RT

Similarly total number of ions in CsBr solution = 2 x (1 g /212.80 g/mol)/0.01L

= 0.47×2RT

Therefore osmotic pressure is higher in NaCl solution.

A sailor on a trans-Pacific solo voyage notices one day that if he puts 735.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).

Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.

You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.

Answers

Answer:

Amount of salt in 1 L seawater = 34 g

Explanation:

According to Archimedes' principle, mass of freshwater and cup = mass of equal volume of seawater

mass of freshwater = density * volume

1 cm³ = 1 mL

mass of freshwater = 0.999 g/cm³ * 735 cm³ = 734.265 g

mass of freshwater + cup = 734.265 + 25 = 759.265 g

Therefore,  mass of equal volume of seawater = 759.265 g

Volume of seawater displaced = 735 mL = 0.735 L (assuming the cup volume is negligible)

1 liter = 1000 cm³ = 1000 mL;

Density of seawater = mass / volume

Density of seawater = 759.265 g / 0.735 L = 1033.01 g/L

Density of freshwater in g/L = 0.999 g/ (1/1000) L = 999 g/L

mass of 1 Liter seawater = 1033.01 g

mass of 1 Liter freshwater = 999 g

mass of salt dissolved in 1 L of seawater = 1033.01 g - 999 g = 34.01 g

Therefore, amount of salt in 1 L seawater = 34 g

Cesium-137 is part of the nuclear waste produced by uranium-235 fission. The half-life of cesium-137 is 30.2 years. How much time is required for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value?

Answers

Answer:

There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value

Explanation:

The radioactive decay follows always first-order kinetics where its general law is:

Ln[A] = -Kt + ln[A]₀

Where [A] is actual concentration of the atom, k is rate constant, t is time and [A]₀ is initial concentration.

We can find rate constant from half-life as follows:

Rate constant:

t(1/2) = ln 2 / K

As half-life of Cesium-137 is 30.2 years:

30.2 years = ln 2 / K

K = 0.02295 years⁻¹

Replacing this result and with the given data of the problem:

Ln[A] = -Kt + ln[A]₀

Ln[A] = -0.02295 years⁻¹* t + ln[A]₀

Ln ([A] / [A₀]) = -0.02295 years⁻¹* t

As you want time when [A] is 20% of [A]₀, [A] / [A]₀ = 0.2:

Ln (0.2) = -0.02295 years⁻¹* t

70.1 years = t

There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value

The argon atoms are excited into an excited state before emitting the 488.0 nm laser. It is known that the energy of the first ionization energy of argon is 1520 kJ mol-1. What is the energy level of the excited state (in unit eV) lies below the vacuum energy level (0 eV)

Answers

Answer:

Explanation:

Given that:

The argon atoms are excited into an excited state before emitting the 488.0 nm laser.

the energy of the first ionization energy of argon is 1520 kJ mol-1.

SInce 1 eV = 96.49 kJ/mol

Therefore, the energy of the first ionization energy of argon in eV is = ( 1520/ 96.49) eV

=  15.75 eV

To find where  the energy level of the excited state lies below the vacuum energy level, let's first determine, the energy liberated by using planck expression.

[tex]E = \dfrac{hc}{\lambda}[/tex]

[tex]E = \dfrac{6.6 \times 10^{-34} \times 3 \times 10^8}{488 \times 10^{-9}}[/tex]

[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]

[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]

[tex]E =4.057 \times 10^{-19} \ J[/tex]

Converting Joules (J) to eV ; we get,

[tex]E =\dfrac{4.057 \times 10^{-19}}{1.6 \times 10^{-19}}[/tex]

E = 2.53 eV

The energy levels of the first exited state = -13.223 eV

A monoprotic weak acid, HA , dissociates in water according to the reaction HA(aq)+H2O(l)↽−−⇀H3O+(aq)+A−(aq) The equilibrium concentrations of the reactants and products are [HA]=0.260 M , [H3O+]=4.00×10−4 M , and [A−]=4.00×10−4 M . Calculate the Ka value for the acid HA.

Answers

Answer:

Ka = 6.15x10⁻⁷

Explanation:

Ka is defined as dissociation constant in the equilibrium of a weak acid with water. The general reaction is:

HA(aq) + H₂O(l) ⇆ H₃O⁺(aq) + A⁻(aq)

And Ka is defined as the ratio between molar concentrations in equilibrium of products over reactants as follows:

Ka = [H₃O⁺] [A⁻] / [HA]

You don't take water in the equilibrium beacuse is a pure liquid

Replacing with the concentrations of the problem:

Ka = [H₃O⁺] [A⁻] / [HA]

Ka = [4.00x10⁻⁴] [4.00x10⁻⁴] / [0.260]

Ka = 6.15x10⁻⁷

As a reaction proceeds, the ratio between the rate of consumption of reactant and the rate of formation of product:

Answers

Answer:

Depends on the reaction.

Explanation:

Hello,

In this case, the answer is depends on the reaction since the ratios between the rates of both consumption and formation depend upon the stoichiometric coefficients in the chemical reaction. For instance, for the reaction:

A -> 2B

The relationship is:

[tex]\frac{1}{-1}r_A =\frac{1}{2} r_B[/tex]

Therefore, we can see that the rate of consumption of A half the rate of formation of B, but is we consider the following chemical reaction:

2A -> B

The relationship is:

[tex]\frac{1}{-2}r_A =\frac{1}{1} r_B[/tex]

Therefore we can see that the rate of consumption of A doubles the rate of consumption of B.

Best regards.

Human blood typically contains 1.04 kg/L of platelets. A 1.89 pints of blood would contain what mass (in grams) of platelets

Answers

A 1.89 pints of blood would contain 873 grams of platelets.

To calculate the amount of platelets present in 1.89 pints, it is first necessary to transform this unit of volume into liters:

1 pint = 473.2 mL

                                  [tex]1.89 \times 473.2 = 894.3 mL[/tex]

1000 L = 1mL

         

                                         [tex]\frac{894.3}{1000}= 0.84L[/tex]

Now, just calculate the amount of platelets present in 0.84L:

                                    [tex]\frac{1.04\times10^{3}g}{xg}=\frac{1L}{0.84L}[/tex]

                               

                                       x = 873 grams

So, a 1.89 pints of blood would contain 873 grams of platelets.

Learn more about transformation of units in: brainly.com/question/10667910

Acetonitrile (CH3CN) is an important industrial chemical. Among other things, it is used to make plastic moldings, which have multiple uses, from car parts to Lego bricks. Which one of the following statements about acetonitrile is not correct?a. Acetonitrile has 16 valence electrons in its Lewis structure. b. Acetonitrile has one triple bond. c. Acetonitrile has one pair of nonbonding electrons. d. All atoms satisfy the octet rule in acetonitrile. e. One carbon atom and the nitrogen atom have nonzero formal charges.

Answers

Answer:

One carbon atom and the nitrogen atom have nonzero formal charges.

Explanation:

The compound Acetonitrile has sixteen valence electrons as is easily San from its structure. It contains a carbon nitrogen triple bond with a lone pair of electrons on nitrogen. All atoms satisfy the octet rule and there is no hyper valent atom in the molecule.

The formal charge an carbon and nitrogen is calculated as follows;

No. of valence electron on atom - [non bonded electrons + no. of bonds]

Therefore, for carbon and nitrogen, we have;

formal charge on carbon = 4 - (0 + 4) = 0

formal charge on nitrogen = 5 - (2 + 3) = 0

Hence carbon and nitrogen both possess zero formal charges.

Aqueous ammonia is added to a mixture of silver chloride and water. Given that Kf for the reaction between Ag+ and NH3 is large, which of the following are true?
A) The free ions are favored over the complex ion.
B) The complex ion is favored over solid silver chloride.
C) The free Ag+ ion is unstable.
D) More silver chloride will precipitate.

Answers

Answer:

B) The complex ion is favored over solid silver chloride

C) The free Ag+ ion is unstable.

Explanation:

Hello,

In this case, since the dissociation of solid silver chloride occurs at equilibrium with a neglectable solubility product (very small Ksp), which means that the solid tends to remain undissolved:

[tex]AgCl(s)\rightleftharpoons Ag^+(aq)+Cl^-(aq)[/tex]

By the addition of ammonia, the following reaction is favored:

[tex]Ag^+(aq)+2NH_3(aq)\rightleftharpoons [Ag(NH_3)_2]^+(aq)[/tex]

Which has a large equilibrium constant, which means that the formation of the complex is assured. In such a way, by addition of more ammonia, more complex will be formed, therefore B) The complex ion is favored over solid silver chloride is true. Moreover, C) The free Ag+ ion is unstable, since they tend to form the complex once they are formed by the solid silver chloride so it readily reacts.

Best regards.

The compound sodium hydroxide is a strong electrolyte. Write the transformation that occurs when solid sodium hydroxide dissolves in water. Use the pull-down boxes to specify states such as (aq) or (s).

Answers

Answer:

Solid sodium hydroxide dissolves in water to form an aqueous solution of ions.

NaOH(s) ⇌ Na+(aq) + OH–(aq) ΔH1 = ?

Solid sodium hydroxide reacts with aqueous hydrochloric acid to form water and an aqueous solution of sodium chloride.

NaOH(s) + H+(aq) + Cl–(aq) ⇌ H2O(l) + Na+(aq) + Cl–(aq) ΔH2 = ?

Solutions of aqueous sodium hydroxide and hydrochloric acid react to form water and aqueous sodium chloride.

Na+(aq) + OH–(aq) + H+(aq) + Cl–(aq) ⇌ H2O(l) + Na+(aq) + Cl–(aq) ΔH3 = ?

A spontaneous galvanic cell consists of a Pb electrode in a 1.0 M Pb(NO3)2 solution and a Cd electrode in a 1.0 M Cd(NO3)2 solution. What is the standard cell potential for this galvanic cell

Answers

Answer:

0.27 V

Explanation:

Given that the both half cells contain 1.0 molar solutions of their respective electrolytes.

E°Pb= -0.13 V

E°Cd = -0.40 V

Since it is a galvanic cell, the electrode having a more negative electrode potential will serve as the anode and the electrode having a less negative electrode potential will serve as the cathode.

Hence cadmium will serve as the anode and lead will serve as the cathode.

E°cell = E°cathode - E°anode

E°cell = -0.13 - (-0.40)

E°cell = 0.27 V

Write the equation for the reaction described: A solid metal oxide, , and hydrogen are the products of the reaction between metal and steam. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.)

Answers

Answer:

Pb + 2H2O --> PbO2 + 2H2

Explanation:

Products:

Solid metal; PbO2

Hydrogen; H

Reactants:

Metal; Pb

Steam; H2O

Reactants --> Products

Pb + H2O --> PbO2 + H2

Upon balancing we have;

Pb + 2H2O --> PbO2 + 2H2

Consider the compound hydrazine N2H4 (MW = 32.0 amu). It can react with I2 (MW = 253.8 amu) by the following reaction 2 I2 + N2H4 ------------- 4 HI + N2 (a) How many grams of I2 are needed to react with 36.7 g of N2H4? (b) How many grams of HI (MW = 127.9 amu) are produced from the reaction of 115.7 g of N2H4 with excess iodine?

Answers

Answer:Cobb

Explanation:What y'all

Compound A is an alkene that was treated with ozone to yield only (CH3CH2CH2)2C=O. Draw the major product that is expected when compound A is treated with a peroxy acid (RCO3H) followed by aqueous acid (H3O+).

Answers

Answer:

2,2,3,3-tetrapropyloxirane

Explanation:

In this case, we have to know first the alkene that will react with the peroxyacid. So:

What do we know about the unknown alkene?

We know the product of the ozonolysis reaction (see figure 1). This reaction is an oxidative rupture reaction. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If [tex](CH_3CH_2CH_2)_2C=O[/tex] is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.

What is the product with the peroxyacid?

This compound in the presence of alkenes will produce peroxides. Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product 2,2,3,3-tetrapropyloxirane. (see figure 2)

The literature value for the Ksp of Ca(OH)2 at 25 °C is 4.68E−6. Imagine you ran the experiment and got a calculated value for Ksp which was too high. Select all of the possible circumstances which would cause this result.

A. The HCl was more concentrated than the labeled molarity (0.0500 M).

B. The Ca[OH]2 solution may have been supersaturated.

C. The HCl was less concentrated than the labeled molarity (0.0500 M).

D. The Ca[OH]2 solution may have been unsaturated.

E. The titration flask may have not been clean and had a residue of a basic solution.

F. The titration flask may have not been clean and had a residue of an acidic solution.

Answers

Answer:

D. The Ca[OH]2 solution may have been unsaturated

Explanation:

The solubility product constant Ksp of any given chemical compound is a term used to describe the equilibrium between a solid and the ions it contains solution. The value of the Ksp indicates the extent to which any compound can dissociate into ions in water. A higher the Ksp, implies more greater solubility of the compound in water.

If the Ksp is more than the value in literature, this false value must have arisen from the fact that the solution was unsaturated hence it appears to be more soluble than it should normally be when saturated.

Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)

Answers

Answer:

The correct answer is 1332 KJ.

Explanation:

Based on the given information,  

ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.  

Now the balanced equation is:  

C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)

ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2

ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)

ΔH°rxn = -1411.9 KJ

Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.  

Now based on the balanced chemical reaction,  

ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2

ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)

ΔS°rxn = -267.68 J/K or -0.26768 KJ/K

T = 25 °C or 298 K

Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get

ΔG = -1411.9 - 298.0 × (-0.2677)

ΔG = -1332 KJ.  

Thus, the maximum work, which can obtained is 1332 kJ.  

of their
(c) Ethanol is an alcoholic beverage which can be brewed
from cassava. Outline the process by which ethanol can
be prepared.
[3]
(d) Ethanol is used as a fuel.construct a balanced chemical
equation for its complete combustion.
[2]
[Total:10 Marks]
s?

Answers

Answer:

the chemical equation of ethanol as fuel is

C2H5OH(l)+3 02(g)------2CO2(g)+3H2O(g)

the preparation process of ethanol from cassava is

cassava flour---liquification---saccharification---cooling---fermentation---distillation---ethanol

Which of the following chemical equations corresponds to the standard molar enthalpy of formation of Na_2CO_3(s)?
a. 2 NA(s) + C(s) + 3 O(g) ------------> Na_2CO_3(s)
b. Na_2O(s) + CO_2(g) --------------->Na_2CO_3 (s)
c. Na_2(s) + C(s) + 3 O(g) -------------> Na_2CO_3 (s)
d. Na_2O(s) + CO(g) ---------------> Na_2CO_3(s)
e. 2 Na(s)+ C(s) + 3/2 O_2(g) ------------> Na_2CO_3(s)

Answers

Answer:

2 Na(s) + C(s) + 3/2 O₂(g) → Na₂CO₃(s)

Explanation:

The molar enthalpy of formation of a chemical is defined as the change in enthalpy during the formation of 1 mole of the substance from its constituent elements (Constituent elements are pure elements you have in the periodic table)

For Na₂CO₃ constituent elements are Na(s), C(s) and O₂(g) and the chemical equation that represents the molar enthalpy is:

2 Na(s) + C(s) + 3/2 O₂(g) → Na₂CO₃(s)

2.Which of the alcohols listed below would you expect to react most rapidly with PBr3?A)CH3CH2CH2CH2CH2CH2OHB)(CH3CH2)2CH(OH)CH2CH3C)(CH3CH2)2CHOHCH3D)(CH3CH2)3COHE)(CH3CH2)2C(CH3)OH

Answers

Answer:

A) CH3CH2CH2CH2CH2CH2OH

Explanation:

For this question, we have the following answer options:

A) CH3CH2CH2CH2CH2CH2OH

B) (CH3CH2)2CH(OH)CH2CH3

C) (CH3CH2)2CHOHCH3

D) (CH3CH2)3COH

E) (CH3CH2)2C(CH3)OH

We have to remember the reaction mechanism of the substitution reaction with [tex]PBr_3[/tex]. The idea is to generate a better leaving group in order to add a "Br" atom.

The [tex]PBr_3[/tex] attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an Sn2 reaction. Therefore we will have a faster reaction with primary substrates. In this case, the only primary substrate is molecule A. So, "CH3CH2CH2CH2CH2CH2OH" will react faster.

See figure 1

I hope it helps!

How are animals used in vaccine development?

Answers

Answer:

Animals whose certain organs closely match those of humans or have similar genetic makeup are used in vaccine tests because the results can closely resemble those same results on humans.

Explanation:

Answer:

they use them to test the effectiveness of the vaccine.

Explanation:

Other Questions
Apple introduced the first iPod in October 2001. Sales of the portable music player grew slowly in the early years but began to grow rapidly after 2005. But the iPod era is coming to a close. Smartphones with music and video Apple introduced the first iPod in October 2001. Sales of the portable music player grew slowly in the END OF THE IPOD ERA players are replacing the iPod, along with the category of device it helped to create. Sales of the iPod worldwide from 2007 through 2011 (in millions) were approximately N(0= -165t2 + 13.13t+ 39.9 (0 < t< 4) in year t, where t= 0 corresponds to 2007. Show that the worldwide sales of the iPod peaked sometime in 2009. What was the approximate largest number of iPods sold worldwide from 2007 through 2011? How did the end of the Vietnam War mark a difference in US foreign policy? A. The US had never lost a war before, making war a less favorable option B. The US required an attack on US soil first before beginning a war C. The US would not get involved in any foreign wars after it D. The US would begin new wars in Southeast Asia to prove its strength hey can you help me w/ some math ?? i make $8.50 an hour. monday through sunday only wednesdays off. how much will i have in 2 years from today ? monday, tuesday & sunday is from 4-9pm .... then friday,saturday & sunday is from 4-10pm. What is the role of religion in Lincolns understanding of the war? What role does religion play in his understanding of the United States more broadly Explain the attitude of British , before and after 1857 , towards Indian muslims? Caleb made 6 quarts of trail mix for his camping trip. Each week,he ate 4 pints of the trail mix. How many weeks did Caleb have trail mix?Sry if this is too much If an element has 6 protons, 6 electrons, and 8 neurons, then whats the atomic number An architect maps two buildings, which are located on a piece of land, onto a coordinate plane. He wants to build a wall at the diagonal AC to divide the piece of land into two parts. What will be the length of the wall? A. 65 units B. 6 units C. 237 units D. 2 units 13) The diameter of a plant cell is 1.26 m and the length of a bacterium is 5.1 m. Compare their diameters. 3) A charged particle is moving with velocity of V in a magnetic field of B, which one of the followings is correct: A) The direction of force F on the charge is parallel to magnetic field B B) The direction of force F on the charge is parallel to velocity direction V C) The force is maximized when velocity direction and magnetic field are parallel D) The force F is perpendicular (normal) to both velocity V and magnetic field B E) The direction of force on positive charge or negative charge would be the same David Setran said that this activity is most productive in helping emerging adults remain faithful to his or her beliefs through this stage of life: Bronco Corp. has decided to establish a subsidiary in Taiwan that will produce stereos and sell them locally in the country. It expects that its cost of producing these stereos will be one third the cost of producing them in the United States. Assuming that its production cost estimates are accurate, is Broncos strategy sensible? Explain. What does Caret mean? What can hope do to change the numbers 2, 3, 5 and 6 to lowercase letters? Founder of Vanguard, Jack Bogle, believes that all investors should buy stock indices. Group of answer choices He believes in strong form market efficiency. He believes in semi-strong form market efficiency. He believes in weak form market efficiency. He believes markets are not efficient. how do you solve 6 5c = -29 [tex]f(x) = {x}^{2} + 4x - 5[/tex] ; >-2Find [tex] \frac{d {f}^{ - 1} }{dx} [/tex] at x=16Please show solving i think the answer. . .is the second one please correct me if i'm wrong 20 points thanks :) im kinda stuck lol Lamar has been running sprints to prepare for his next football game.He has found that he can maintain his maximum speed for 45 yards.Hes thinking of running in a 5km race in a few months,but doesnt know if he can maintain his maximum speed for the entire 5 km.Can you help him determine how far he can?