Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds
Biodiversity decline poses a problem in an ecosystem because
Answer:
Biodiversity decline continues due to a rapidly expanding human population. Habitat is damaged in order to meet growing needs for agriculture, urban development, water and materials. Fish, wildlife and plants are overharvested, despite mounting evidence that many harvesting practices are unsustainable.
A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.400 rev/s. What is its angular velocity (in rev/s) after a 22.0 kg child gets onto it by grabbing its outer edge
Answer:
The final angular velocity is rev/s is 0.293 rev/s.
Explanation:
Given;
mass of the merry-go-round, m₁ = 120 kg
radius of the merry-go-round, r = 1.8 m
initial angular velocity, ω = 0.4 rev/s
mass of the child, m₂ = 22 kg
Apply the principle of conservation angular momentum to determine the final angular velocity;
[tex]I_i= I_f\\\\\frac{1}{2} m_1r^2 \omega _i = \frac{1}{2} m_1r^2 \omega _f + m_2r^2 \omega _f\\\\ \frac{1}{2} m_1r^2 \omega _i =( \frac{1}{2} m_1r^2 + m_2r^2 )\omega _f\\\\\omega _f = \frac{ \frac{1}{2} m_1r^2 \omega _i}{\frac{1}{2} m_1r^2 + m_2r^2} \\\\\omega _f = \frac{ \frac{1}{2} m_1 \omega _i}{\frac{1}{2} m_1 + m_2}\\\\\omega _f = \frac{0.5 \ \times \ 120\ kg \ \times \ 0.4\ rev/s}{0.5 \ \times 120\ kg \ \ + \ \ 22 \ kg} \\\\\omega _f = 0.293 \ rev/s\\[/tex]
Therefore, the final angular velocity is rev/s is 0.293 rev/s.
Convert 125 mL to L
Answer:
1 L = 1000 mL
125 mL = 125/1000 = 0.125 L
Answer:
0.125
Explanation:
divide by 1 000 to convert mL to liters
g 2. In a laboratory experiment on standing waves a string 3.0 ft long is attached to the prong of an electrically driven tuning fork which vibrates perpendicular to the length of the string at a frequency of 60 Hz. The weight (not mass) of the string is 0.096 lb. a) [5 pts] What tension must the string be under (weights are attached to the other end) if it is to vibrate in four loops
Answer:
The tension in string will be "3.62 N".
Explanation:
The given values are:
Length of string:
l = 3 ft
or,
= 0.9144 m
frequency,
f = 60 Hz
Weight,
= 0.096 lb
or,
= 0.0435 kgm/s²
Now,
The mass will be:
= [tex]\frac{0.0435}{9.8}[/tex]
= [tex]0.0044 \ kg[/tex]
As we know,
⇒ [tex]\lambda=\frac{2L}{n}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{2\times 0.9144}{4}[/tex]
⇒ [tex]=0.4572 \ m[/tex]
or,
⇒ [tex]v=f \lambda[/tex]
⇒ [tex]=0.4572\times 60[/tex]
⇒ [tex]=27.432 \ m/s[/tex]
Now,
⇒ [tex]v=\sqrt{\frac{T}{\mu} }[/tex]
or,
⇒ [tex]T=\frac{m}{l}\times v^2[/tex]
On putting the above given values, we get
⇒ [tex]=\frac{0.0044}{0.9144}\times (27.432)^2[/tex]
⇒ [tex]=\frac{752.51\times 0.0044}{0.9144}[/tex]
⇒ [tex]=3.62 \ N[/tex]
Which diagram shows magnets that will attract each other? 2 bar magnets side by side with their long axes vertical, both red S on top and blue N on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with blue N on top and red S on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with blue N on top and red S on bottom and the bottom magnet with red S on top and blue N on bottom. 2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with red S on top and blue N on bottom.
2 bar magnets top to bottom with their long axes vertical, the top one with red S on top and blue N on bottom and the bottom magnet with red S on top and blue N on bottom. this diagram shows magnets that will attract each other. Hence option D is correct.
What is Magnet ?A permanent magnet is an item constructed of magnetised material that generates its own persistent magnetic field. A refrigerator magnet, for example, is commonly used to hold notes on a refrigerator door. Ferromagnetic (or ferrimagnetic) materials are those that can be magnetised and are strongly attracted to a magnet. These include the elements iron, nickel, and cobalt, as well as their alloys, some rare-earth metal alloys, and naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones that are strongly attracted to a magnet and are widely thought to be magnetic, all other substances respond weakly to a magnetic field via one of many different forms of magnetism.
Hence option D is correct.
To know more about magnet :
https://brainly.com/question/21974887
#SPJ3.
A record is spinning on a turntable. A record is a uniform disk of mass 1.00 kg and a radius of 0.13 m that spins around an axis through its center. The record is initially spinning at 10 rad/s. Then the motor is turned off and the record slows to a stop with constant angular acceleration. As the record is slowing down it spins through 6.37 revolutions. What is the magnitude of the net torque acting on the record as it slows down
Answer:
T = 0.01 Nm
Explanation:
First, we will calculate the angular acceleration of the disk:
[tex]2\theta\alpha = \omega_f^2-\omega_i^2[/tex]
where,
θ = angular displacement = (6.37 rev)(2π rad/1 rev) = 40.02 rad/s
α = angular acceleration = ?
ωi = initial angular speed = 10 rad/s
ωf = final angular speed = 0 rad/s
Therefore,
[tex](2)(40.02\ rad/s)\alpha = (0\ rad/s)^2-(10\ rad/s)^2[/tex]
α = -1.25 rad/s²
negative sign shows deceleration
α = 1.25 rad/s²
Now, we will calculate the moment of inertia of disk:
[tex]I = \frac{1}{2}mr^2[/tex]
where,
I = Moment of Inertia = ?
m = mass of disk = 1 kg
r = radius of disk = 0.13 m
Therefore,
[tex]I = \frac{1}{2} (1\ kg)(0.13\ m)^2[/tex]
I = 0.00845 kg.m²
Now, the torque can be given as:
T = Iα
T = (0.00845 kg.m²)(1.25 rad/s²)
T = 0.01 Nm
Two creatures sit on a horizontal frictional rotating platform. The platform rotates at a constant speed. The creatures do not slip off as it rotates.
ASSUME:
Red has a mass of 5 kg
Red is 1.5 m from the center
Red has a speed of 9 m/s
Blue has a mass of 25 kg
Blue has a speed of 1.8 m/s
The force of friction on Red is EQUAL to the force of friction on Blue
DETERMINE:
How far from the center is Blue
Answer:
M v^2 / R = centripetal force
For Red: M v^2 / R = 5 * 9^2 / 1.5 = 270
For Blue M v^2 / R = 270 = 25 * 1.8^2 / Rb
So Rb = 25 * 1.8^2 / 270 = .3 m
The velocity of a particle is given by v=25t2 -80t-200, where velocity is meter per second and time is seconds. Determine the velocity for the first six seconds when acceleration is zero.
Answer:
v = 220 m / s
Explanation:
This is a kinematics exercise, the expression for velocity is
v = 25 t² - 80 t - 200
asks the velocity for time t = 6 s.
let's calculate
v = 25 6² - 80 6 - 200
v = 220 m / s
The velocity for the first six seconds when acceleration is zero is -44 m/s.
What is velocity?
The velocity of an object is the rate of change displacement with time.
The velocity of the object for the first six seconds when the acceleration is zero is calculated as follows;
[tex]a = \frac{dv}{dt} \\\\a = 50t - 80\\\\0 = 50t - 80\\\\50t = 80\\\\t = 1.6 \ s[/tex]
Velocity when time = 1.6 s
[tex]v(1.6) = 25(1.6)^2 - 80(1.6) - 200\\\\v(1.6) = -264 \ m/s[/tex]
The velocity for the first six seconds when acceleration is zero.
[tex]v = v_{a =0} + v_6\\\\v = - 264 \ + 25(6)^2 - 80(6) - 200\\\\v = -44 \ m/s[/tex]
Learn more about velocity here: https://brainly.com/question/6504879
Science questions!! Please help!!
Post Assessment on Investigating the Immune System
please help!! Please choose the right answers!! Dont guess if you dont know the answers!!
A student wants to determine the speed of sound at an elevation of one mile. To do this the student performs an experiment to determine the resonance frequencies of a tube that is closed at one end. The student takes measurements every day for a week and gets different results on different days. Which of the following experiments would help the student determine the reason for the different results?
a. Repeating the experiment on several 10 degree C days and several 20 degree C days
b. Repeating the experiment using a wider range of frequencies of sound
c. Repeating the original experiment for an additional week
d. Repeating the experiment using a longer tube
Answer:
The correct answer is a
Explanation:
The speed of a sound wave depends on the square root of the modulus of compressibility and the density of the medium.
For the same medium, the speed of sound depends on the temperature of the fora
v = [tex]v_o \ \sqrt{1 + \frac{T}{273} }[/tex]
Therefore, the different results that are obtained are due to changes in temperature. The correct answer is a
since this way it has the values of the speed of sound for each temperature, for which it can compare with the results obtained from the trip.
Determine how would the frequency of the pendulum change if it was taken to the moon by finding the ratio of its frequency on the moon fM to its frequency on the earth fE. Suppose that gE is the free-fall acceleration on the earth and gM is the free-fall acceleration on the moon.
Express your answer in terms of some or all of the variables l, m, gE, gM.
fM/fE = ?
For the pendulum taken to the moon, The frequency change that would occur is mathematically given as
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
What frequency change would occur to the pendulum if it was taken to the moon?Generally, the equation for the Time period is mathematically given as
[tex]T=2\pi\sqrt{L/g}[/tex]
Therefore
[tex]\frac{Fmoon}{Fearth}=\frac{\sqrt{g/6L}}{\sqrt{g/6L}}\\\\\frac{Fmoon}{Fearth}=\sqrt{1/6}[/tex]
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
In conclusion, The frequency change
[tex]\frac{Fmoon}{Fearth}=0.408[/tex]
Read more about frequency
https://brainly.com/question/24623209
Answer:
.408
Explanation:
What is the light speed formula?
If ' c ' is the speed of light, then the formula for it is . . .
c = 299,792,458 meters per second
Please please help me please please help please please
Answer:
Refraction
The rainbow is created because the index of refraction of water droplets changes as a function of wavelength. So, when the light enters the water droplet different colors will bend at different angles thus producing a dispersive effect known as a rainbow.
Answer:
D: Refraction
Explanation:
Refraction is the spitting of the electromagnetic spectrum, or the disembling of colours. For example, white is a mixture of all the colours.
You are asked to design a spring that will give a 1070 kg satellite a speed of 3.75 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible.
(a) What must the force constant of the spring be?
(b) What distance must the spring be compressed?
Answer:
[tex]380697.33\ \text{N/m}[/tex]
[tex]0.138\ \text{m}[/tex]
Explanation:
m = Mass rocket = 1070 kg
v = Velocity of rocket = 3.75 m/s
a = Acceleration of rocket = 5g
g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
The energy balance of the system is given by
[tex]\dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2\\\Rightarrow kx=\dfrac{mv^2}{x}\\\Rightarrow kx=\dfrac{1070\times 3.75^2}{x}\\\Rightarrow kx=\dfrac{7250}{x}[/tex]
The force balance of the system is given by
[tex]ma=kx\\\Rightarrow m5g=\dfrac{7250}{x}\\\Rightarrow x=\dfrac{7250}{1070\times 5\times 9.81}\\\Rightarrow x=0.138\ \text{m}[/tex]
The distance the spring must be compressed is [tex]0.138\ \text{m}[/tex]
[tex]k=\dfrac{7250}{x^2}\\\Rightarrow k=\dfrac{7250}{0.138^2}\\\Rightarrow k=380697.33\ \text{N/m}[/tex]
The force constant of the spring is [tex]380697.33\ \text{N/m}[/tex].
A self-driving car traveling along a straight section of road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed of 25.0 m/s. Then the vehicle travels for 39.0 s at constant speed until the brakes are applied, stopping the vehicle in a uniform manner in an additional 5.00 s.
(a) How long is the self-driving car in motion (in s)?
(b) What is the average velocity of the self-driving car for the motion described? (Enter the magnitude in m/s.) m/s
Answer:
[tex]56.5\ \text{s}[/tex]
[tex]21.13\ \text{m/s}[/tex]
Explanation:
v = Final velocity
u = Initial velocity
a = Acceleration
t = Time
s = Displacement
Here the kinematic equations of motion are used
[tex]v=u+at\\\Rightarrow t=\dfrac{v-u}{a}\\\Rightarrow t=\dfrac{25-0}{2}\\\Rightarrow t=12.5\ \text{s}[/tex]
Time the car is at constant velocity is 39 s
Time the car is decelerating is 5 s
Total time the car is in motion is [tex]12.5+39+5=56.5\ \text{s}[/tex]
Distance traveled
[tex]v^2-u^2=2as\\\Rightarrow s=\dfrac{v^2-u^2}{2a}\\\Rightarrow s=\dfrac{25^2-0}{2\times 2}\\\Rightarrow s=156.25\ \text{m}[/tex]
[tex]s=vt\\\Rightarrow s=25\times 39\\\Rightarrow s=975\ \text{m}[/tex]
[tex]v=u+at\\\Rightarrow a=\dfrac{v-u}{t}\\\Rightarrow a=\dfrac{0-25}{5}\\\Rightarrow a=-5\ \text{m/s}^2[/tex]
[tex]s=\dfrac{v^2-u^2}{2a}\\\Rightarrow s=\dfrac{0-25^2}{2\times -5}\\\Rightarrow s=62.5\ \text{m}[/tex]
The total displacement of the car is [tex]156.25+975+62.5=1193.75\ \text{m}[/tex]
Average velocity is given by
[tex]\dfrac{\text{Total displacement}}{\text{Total time}}=\dfrac{1193.75}{56.5}=21.13\ \text{m/s}[/tex]
The average velocity of the car is [tex]21.13\ \text{m/s}[/tex].
Place the balloon in a bell jar. If available also add some shaving cream and fresh marshmallows. Ask the instructor for help if you are unfamiliar with this apparatus. The motor of the vacuum pump will remove air from the bell jar when it is turned on. Make a prediction about what you think will happen to the balloon as air is removed from the bell jar.
Answer:
The balloon will collapse
Explanation:
When air is removed from the bell jar, the balloon will collapse if the internal pressure from the balloon does not balance the atmospheric pressure from the surroundings.
When silver nitrate and beryllium chloride react, silver chloride and beryllium nitrate form. What are the coefficients in this equation? (Note: Be sure to keep the reactants and products in the same order that they appear in the question.)
A. 2,1,1,2
B. 1,2,2,1
C. 1,2,1,2
D. 2,1,2,1
Answer:
D. 2,1,2,1
Explanation:
The equation of the reaction is; 2AgNO3 + BeCl2 + ---------》2AgCl + Be(NO3)2
The rule applied in balancing chemical reaction equation is that the number of atoms of each element on the reactants side must be the same as the number of atoms of the same element on the products sides.
If this rule is properly applied to the reaction between silver nitrate and beryllium chloride to form silver chloride and beryllium nitrate , the coefficients in the equation are; 2,1,2,1
If 84 J of work are exerted to pull a wagon, how much force does it take to pull the wagon 7.0 m? Round your answer to the nearest whole number.
Answer: It takes 12 N of force to pull the wagon.
Explanation:
A bat emits a 40 kHz chirp to locate flying insects. If the speed of sound is 340 m/s and a bat hears the echo from the moth after 0.6 seconds, then how far away is the moth?
102 m
Explanation:
The time 0.6 sec is the time it took for the sound to travel from the bat to the moth and back. So it took 0.3 sec for the sound to reach the moth. From the definition of speed, the distance of the moth d to the bat is given by
v = d/t ---> d = vt = (340 m/s)(0.3 sec) = 102 m
¿Cuál es la frecuencia de rotación en la tierra?
Answer:
frequency is approximately 11.5 µHz, or more exactly, 11.5740740e-6 Hz
Explanation:
Polarizing windows, filters, etc. are often used to reduce the amount of light that enters the lens of a camera or into a room or a car. A library atrium has an overhead skylight that lets in too much light during the day which heats up the interior of the library far too much. The building engineer installs new double paned polarizing sky lights to reduce the intensity. If sunlight, which is unpolarized, has an average intensity of 1366 W/m2 what angle should the polarizing axis of the second pane of the window make with the polarizing axis of the first pane of the window in order to reduce the intensity of the sunlight to 33% of the original value
Answer:
θ = 35.7º
Explanation:
For this exercise we must use the law of Malus
I = I₀ cos² θ
where the angle is between the two polarizers.
When the unpolarized light from the sun reaches the first polarizer, only the light polarized in the direction manages to be transmitted, which is why
I₁ = I₀ /2
this light reaches the second polarizer
I₂ = I₁ cos² θ
I₂ = I₀/2 cos² θ
cos² θ = 2 I₂ / Io
indicate that the transmitted light is 33% = 0.33 I₀
cos² θ = 2 0.33
cos θ = √0.66
θ = cos⁻¹ 0.8124
θ = 35.7º
what type of signal is utilized by the GP's satellite ?
Answer:
Hi how are you doing today Jasmine
Answer:
The answer is B
Explanation:
I did the USA test prep
13. For an object to appear transparent, what interaction must occur between light waves and the object they hit?
A. They are refracted.
C. They are diffracted
B. They are absorbed.
D. They are transmitted
Answer:
The answer is B
Explanation:
The absorption happens when photons from light hit atoms and molecules, and they vibrate because of that specific interaction. Then the heat ejects from the object in the format of thermal energy.
For an object to appear transparent, light waves must be transmitted through the object. Option D is correct.
What are light waves?Light waves are a type of electromagnetic radiation that can be perceived by the human eye.
Here,
For an object to appear transparent, light waves must be transmitted through the object. Therefore, the correct answer is D. When light waves are transmitted, they pass through the object without being absorbed or reflected, allowing us to see through the object. The degree to which light is transmitted through an object is related to the object's optical properties, such as its refractive index, which determines how much the light is bent as it passes through the object.
Learn more about light waves here:
https://brainly.com/question/23460034
#SPJ6
Plz help w answer 1:/ confused ash
Answer:
I would say d I had the same question yesterday and I got it correct so hope that helps
A 10 kg medicine ball is thrown at a velocity of 15 km/hr ( m/s) to a 50 kg skater who is
at rest on the ice. The skater catches the ball and subsequently slides with the ball across the
ice.
Complete Question
A 10 kg medicine ball is thrown at a velocity of 15 km/hr ( m/s) to a 50 kg skater who is at rest on the ice. The skater catches the ball and subsequently slides with the ball across the ice.
Calculate the kinetic energy after collision(in joules).
Answer:
[tex]K.E=70.23J[/tex]
Explanation:
From the question we are told that:
Mass of ball [tex]m_b=10kg[/tex]
Speed [tex]V_{b1}=15 km/hr ( m/s)[/tex]
[tex]V_{b1} = 4.1667 m/s[/tex]
[tex]V_{b1} = 4.1667 m/s[/tex]
Mass of Skater [tex]m_s=50kg[/tex]
Generally the equation for conservation of momentum is mathematically given by
[tex]m_sV_{s1}+m_bV_{b1}=(m_s+m_b)V[/tex]
[tex]V=\frac{m_sV_{s1}+m_bV_{b1}}{(m_s+m_b)}[/tex]
[tex]V=\frac {50+10*4.1667}{(50+10)}[/tex]
[tex]V=1.53m/s[/tex]
Generally the equation for Kinetic energy is mathematically given by
[tex]K.E=\frac{1}{2}(m_s+m_b)V^2[/tex]
[tex]K.E=\frac{1}{2}(50+10)(1.53)^2[/tex]
[tex]K.E=70.23J[/tex]
Therefore kinetic energy K.E after collision is given as
[tex]K.E=70.23J[/tex]
An electron is accelerated through 1.90 103 V from rest and then enters a uniform 1.80-T magnetic field.
(a) What is the maximum magnitude of the magnetic force this particle can experience?
Answer:
https://www.slader.com/discussion/question/an-electron-is-accelerated-through-240-times-103-v-from-rest-and-then-enters-a-uniform-170-t-magnetic-field-what-are-a-the-maximum-and-b-the-9e425fbd/
( Here is solution)
A spring is hung from the ceiling. When a coffee mug is attached to its end, it stretches 2.5 cm before reaching its new equilibrium length. The block is then pulled down slightly and released. What is the frequency of oscillation
Answer:
Explanation:
In equilibrium , weight of mug is equal to restoring force .
mg = kx where m is mass of mug , k is spring constant and x is extension .
k / m = g / x = 9.8 ms⁻² / .025 m
= 392
frequency of oscillation n = [tex]\frac{1}{2\pi}\sqrt{\frac{k}{m} }[/tex]
[tex]n=\frac{1}{2\pi}\sqrt{392 }[/tex]
= 4.46 per second.
Which term refers to how often a person works out?
Answer: Frequency
Explanation: Frequency is term which best describes how often a person exercises.
Answer:
frequency
Explanation:
I took the. test
A woman is driving her car due east at a velocity of 10 m/s. If the woman has a mass of 50 kg and her car has a mass of 1.000 kg, what is the magnitude of the momentum of the woman and her car?
Answer: 10,500 kg m/s
Explanation: (1,000 + 50)(10)
Which of the following creates the night-and-day cycle experienced on Earth?
A) Orbit of Earth around the Sun
B) Rotation of the Sun
C) Rotation of the Earth
D) Tilt of the axis of Earth