What kind of story would a Romantic audience find MOST appealing?
A. science fiction or futuristic worlds
B. a comedy or something light-hearted
C. one based on Christian morals and piety
D. something where a person disappears in nature
A skater spins with an angular speed of 5.9 rad/s with her arms outstretched. She lowers her arms, decreasing her moment of inertia by a factor of 1.7. Ignoring friction on the skates, determine the ratio of her final kinetic energy to her initial kinetic energy.
Answer:
the ratio of her final kinetic energy to her initial kinetic energy is 1.7.
Explanation:
Given;
initial angular speed, ω₁ = 5.9 rad/s
let her initial moment of inertia = I₁
her final moment of inertia [tex]I_2 = \frac{I_1}{1.7}[/tex]
Apply the principle of conservation of angular momentum to determine the final angular speed of the girl;
[tex]\omega_1I_1 = \omega_f I_2\\\\\omega_f = \frac{\omega _1 I_1}{I_2} \\\\\omega_f = \frac{5.9 \times I_1}{I_1/1.7} \\\\\omega = 5.9 \times 1.7 \\\\\omega_f = 10.03 \ rad/s[/tex]
The initial rotational kinetic energy is given as;
[tex]K.E_I = \frac{1}{2}I_1 \omega_I ^2[/tex]
The final rotational kinetic energy is given as;
[tex]K.E_f = \frac{1}{2}I_2 \omega_f ^2[/tex]
The ratio of her final kinetic energy to her initial kinetic energy is given as;
[tex]\frac{K.E_f}{K.E_I}= \frac{\frac{1}{2}I_2 \omega_f^2 }{\frac{1}{2} I_1\omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{I_2 \omega_f^2}{ I_1\omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{I_1/1.7 \times \omega_f^2}{ I_1 \times \omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{ \omega_f^2}{ 1.7 \omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{ (10.03)^2}{ 1.7(5.9)^2} = \frac{17}{10} = 1.7[/tex]
Therefore, the ratio of her final kinetic energy to her initial kinetic energy is 1.7.
In an elastic collision between a moving 10-kg mass and a stationary 10-kg mass half the momentum is transferred to the stationary mass. In this situation the total kinetic energy after the collision is less than it was before the collision. Where did the kinetic energy go?
A) The kinetic energy was destroyed during the collision.
B) Some of the kinetic energy was turned into momentum during the collision.
C) Some of the kinetic energy was turned into heat or used to deform the masses.
D) Some of the kinetic energy was turned into potential energy during the collision.
Answer: C
Explanation:
USAtestprep
what does loudness of a sound depend on?
Answer:
Amplitude
Explanation:
The loudness of a sound depends on the amplitude of vibration producing the sound
A truck is traveling on a level road. The driver suddenly applies the brakes, causing the truck to decelerate by an amount g/2. This causes a box in the rear of the truck to slide forward. If the coefficient of sliding friction between the box and the truckbed is 2/5, find the acceleration of the box relative to the truck and relative to the road.
Answer:
Truck [tex]\dfrac{g}{10}[/tex]
Road [tex]-\dfrac{g}{10}[/tex]
Explanation:
[tex]a_1[/tex] = Acceleration of truck = [tex]-\dfrac{g}{2}[/tex]
[tex]\mu[/tex] = Coefficient of friction = [tex]\dfrac{2}{5}[/tex]
Frictional force is given by
[tex]f=-\mu mg\\\Rightarrow f=-\dfrac{2}{5}mg\\\Rightarrow ma_2=-\dfrac{2}{5}mg\\\Rightarrow a_2=-\dfrac{2}{5}g[/tex]
Net acceleration is given by
[tex]a=a_2-a_1\\\Rightarrow a=-\dfrac{2}{5}g+\dfrac{g}{2}\\\Rightarrow a=\dfrac{g}{10}[/tex]
The acceleration of the box relative to the truck is [tex]\dfrac{g}{10}[/tex] and [tex]-\dfrac{g}{10}[/tex] relative to the road.
Two point charges, initially 3 cm apart, are moved to a distance of 1 cm apart. By what factor does the resulting electric force between them change?
A. 3
B. 1/9
C. 1/3
D. 9
Plutonium-238 has a half life of 87.7 years. What percentage of a 5 kilogram (kg) sample remains after 50 years?
Answer:
i dont know but i should know try g o o g l e
Explanation:
A 2:2 kg toy train is con ned to roll along a straight, frictionless track parallel to the x-axis. The train starts at the origin moving at a speed of 1:6m=s in the +x direction, and continues until it reaches a position 7:5m down the track from where it started. During its journey, it experiences a force pointing in the same direction as the vector 0:6 +0:8 , with magnitude initially 2:8N and decreasing linearly with its x-position to 0N when the train has finished its journey.
Required:
a. Calculate the work done by this force over the entire journey of the train.
b. Find the speed of the train at the end of its journey.
Answer:
a) 10.51 J
b) 3.48 m/s
Explanation:
Given data :
mass of train ( M ) = 2.2 kg
Given initial velocity ( u ) = 1.6 m/s
a) calculating work done by the force over the journey of the train
F = mx + b ------ ( 1 )
m = slope = ( Δ f / Δ x ) = 2.8 / -7.5 = - 0.373 N/m
x = distance travelled on the x axis by the train = 7.5 m
F = force experienced by the train = 2.8 N
x = 0
∴ b = 2.8
hence equation 1 can be written as
F = ( -0.373) x + 2.8 ----- ( 2 )
hence to determine the work done by the force
W = [tex]\int\limits^7_0 { ( -0.373) x + 2.8 )} \, dx[/tex] Note: the limits are actually 7.5 and 0
∴ W ( work done ) = -10.49 + 21 = 10.51 J
b) calculate the speed of the train at the end of its journey
we will apply the work energy theorem
W = 1/2 m*v^2 - 1/2 m*u^2
∴ V^2 = 2 / M ( W + 1/2 M*u^2 ) ( input values into equation )
V^2 = 12.11
hence V = 3.48 m/s
Which one of the following statements concerning the magnetic field inside (far from the surface) a long, current-carrying solenoid is true?
1) The magnetic field is zero.
2) The magnetic field is independent of the number of windings.
3) The magnetic field varies as 1/r as measured from the solenoid axis.
4) The magnetic field is independent of the current in the solenoid.
5) The magnetic field is non-zero and nearly uniform.
A car is travelling at 27m/s and decelerates at a=5m/s2 for a distance of 10m. Calculate its final velocity. (Hint does deceleration imply that the acceleration is positive or negative?)[
Answer:
use the formula to calculate acceleration and you'll get the answers
Why are some tsunamis described as local?
Answer:
A local tsunami is one that originates from within about 100 km or less than 1 hour tsunami travel time from the impacted coastline. Local tsunamis can result in a significant number of casualties since authorities have little time to warn/evacuate the population.
Explanation:
Hope this helps
You are riding on a carousel that is rotating at a constant 24 rpm. It has an inside radius of 4 ftand outside radius of 12 ft. You begin to run from the inside to the outside along a radius. Your peak velocity with respect to the carousel is 6 mph and occurs at a radius of 8 ft.What are your maximum Coriolis acceleration magnitude and its directionwith respect to the carousel
Answer:
magnitude of the Coriolis acceleration is 44.235 ft/s² and the direction of the acceleration is along the axis of transmission
Explanation:
Given the data in the question;
Speed of carousel N = 24 rpm
From the diagram below, selected path direction defines the Axis of slip.
Hence, The Coriolis is acting along the axis of transmission
Now, we determine the angular speed ω of the carousel.
ω = 2πN / 60
we substitute in the value of N
ω = (2π × 24) / 60
ω = 2.5133 rad/s
Next, we convert the given velocity from mph to ft/s
we know that; 1 mph = 1.4667 ft/s
so
[tex]V_{slip[/tex] = 6 mph = ( 6 × 1.4667 ) = 8.8002 ft/s
Now, we determine the magnitude of the Coriolis acceleration
[tex]a_c[/tex] = 2( [tex]V_{slip[/tex] × ω )
we substitute
[tex]a_c[/tex] = 2( 8.8002 ft/s × 2.5133 rad/s )
[tex]a_c[/tex] = 44.235 ft/s²
Hence, magnitude of the Coriolis acceleration is 44.235 ft/s² and the direction of the acceleration is along the axis of transmission
Why don’t the northern and Southern Hemisphere experience summer at the same time?
Answer:
It is because of the tilt of the earth.
Explanation:
the earth is tilted at 23.5 degrees. this makes it so that either the northern or southern hemisphere will be exposed to more rays from the sun. In the areas that are getting more rays from the sun, it gets warmer. Think about it like this, because the earth is tilted, part of it is more in the shade and part of it is more in the light. And its colder in the shade, so thats why seasons happen and why they dont happen at the same time.
Think of a hydropower dam . How is electrical energy produced from potential and kinetic energy ?
hydroelectric dam converts the potential energy stored in a water reservoir behind a dam to mechanical energy—mechanical energy is also known as kinetic energy. ... The generator converts the turbine's mechanical energy into electricity.
Hope this helps!
Answer:
Potential energy and kinetic energy are constituents of mechanical energy.
When a turbine is switched on, it rotates with mechanical energy.
Since a motor runs the turbine, it converts this mechanical energy to electrical energy.
g A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 39.0kg and diameter 78.0cm. The power is off for 34.0s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 170 complete revolutions.At what rate is the flywheel spinning when the power comes back on?
Answer:
[tex]10.54\ \text{rad/s}[/tex]
Explanation:
[tex]\omega_i[/tex] = Initial angular velocity = 500 rpm = [tex]500\times \dfrac{2\pi}{60}\ \text{rad/s}[/tex]
[tex]\omega_f[/tex] = Final angular velocity
t = Time = 34 s
[tex]\theta[/tex] = Angular displacement = 170 revs = [tex]170\times 2\pi\ \text{rad}[/tex]
[tex]\alpha[/tex] = Angulr acceleration
From the kinematic equations of angular motion we have
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \alpha=\dfrac{\theta-\omega_it}{\dfrac{1}{2}t^2}\\\Rightarrow \alpha=\dfrac{170\times 2\pi-500\times \dfrac{2\pi}{60}\times 34}{\dfrac{1}{2}\times 34^2}\\\Rightarrow \alpha=-1.23\ \text{rad/s}^2[/tex]
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=500\times \dfrac{2\pi}{60}+(-1.23)\times 34\\\Rightarrow \omega_f=10.54\ \text{rad/s}[/tex]
The rate at which the wheel is spinning when the power comes back on is [tex]10.54\ \text{rad/s}[/tex].
1. A group of students were trying to find the greatest
rebounded height of a rubber ball dropped on a basketball
court. They dropped from 3 different heights. The chart
below has their data.
26 cm
Drop Height Chart
Trials Drop height Rebound height
Trial 12 meters 103 cm
Trial 2% meter
Trial 31 meter 58 cm
Which explanation is the best reason for why trial 1 has the
greatest rebound height?
A. The speed of the ball is determined by the distance it
travels.
B. The force applied to the ball is a balanced force.
C) The greater the force applied to the ball the greater the
change in motion.
D. The closer the ball is to the ground the more gravity it
has.
Answer:
D th
Explanation:
D B. The force applied to the ball is a balanced force.
Transverse thrusters are used to make large ships fully maneuverable at low speeds without tugboat assistance. A transverse thruster consists of a propeller mounted in a duct; the unit is then mounted below the waterline in the bow or stern of the ship. The duct runs completely across the ship. Calculate the thrust developed by a 1900 kW unit supplied to the propeller if the duct is 2.6 m in diameter and the ship is stationary.
Answer:
Thrust developed = 212.3373 kN
Explanation:
Assuming the ship is stationary
Determine the Thrust developed
power supplied to the propeller ( Punit ) = 1900 KW
Duct distance ( diameter ; D ) = 2.6 m
first step : calculate the area of the duct
A = π/4 * D^2
= π/4 * ( 2.6)^2 = 5.3092 m^2
next : calculate the velocity of propeller
Punit = (A*v*β ) / 2 * V^2 ( assuming β = 999 kg/m^3 ) also given V1 = 0
∴V^3 = Punit * 2 / A*β
= ( 1900 * 10^3 * 2 ) / ( 5.3092 * 999 )
hence V2 = 8.9480 m/s
Finally determine the thrust developed
F = Punit / V2
= (1900 * 10^3) / ( 8.9480)
= 212.3373 kN
5. A 6.0-kilogram mass is moving with a speed of 2.0 m/s. What is the kinetic energy of the mass?
Answer:
K.E. = ½ × mv²
= ½ × 6 × (2)²
= ½ × 6 × 4
= 3 × 4
= 12 J
what kind of charge does an object have if it has extra positive charges
A 1.10 kg block is attached to a spring with spring constant 17 N/m. While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46 cm/s.
A) What is the amplitude of the subsequent oscillations?
B) What is the block's speed at the point where x = 0.25 A?
Answer:
Explanation:
The kinetic energy of block will be converted into potential energy of spring .
If A be the amplitude of oscillations
1 /2 k A² = 1/2 m v²
17 A² = 1.1 x .46²
A² = .0137
A= 11.7 cm
B )
when x = .25 A = .25 x 11.7 = 2.9 cm
potential energy = 1/2 k x²
= .5 x 17 x ( .029 )² = .00715 J
kinetic energy = 1/2 m v²
1/2 m v² + .00715 = .5 1.1 x .46²
1/2 m v² + .00715 = .1164
1/2 m v² = .10925
.5 x 1.1 x v²= .10925
v² = .1986
v = .4456 m /s
= 44.56 cm /s
PLEASE HELP
Which of the following are examples of gravity in action? Select all that apply.
A. an earthquake
B. a planet orbiting the sun
C. a ball flying through the air
D. precipitation falling to Earth
If the girl skater has a mass of 30 kg and moves backward at 5 m/s, what is the velocity or the boy skater
his mass is 50 kg?
Question: Two people stand facing each other at a roller-skating rink then push off each other. If the girl skater has a mass of 30 kg and moves backward at 5 m/s, what is the velocity of the boy skater if his mass is 50 kg?
Answer:
3 m/s
Explanation:
Applying,
The Law of conservation of momentum
Momentum of the girl skater = momentum of the boy skater
MV = mv...................... Equation 1
Where M = mass of the girl skater, V = velocity of the girl skater, m = mass of the boy skater, v = velocity of the boy skater
From the question, we were asked to calculate v
v = MV/m.................. Equation 1
Given: M = 30 kg, V = 5 m/s, m = 50 kg
Substitute these values into equation 1
v = (30×5)/50
v = 3 m/s
Hence the velocity of the the boy skater is 3m/s
7)
Which wave carries the most energy?
-)
A)
B)
C)
D)
Hover over answer image to enlarge
C.
Explanation:
C. is a gamma ray and they carry the most energy.
The most energy is carried by the gamma rays. The correct option is C.
What is a gamma ray?Gamma radiation, also known as gamma rays, is a type of electromagnetic radiation produced by the radioactive decay of atomic nuclei. It is made up of electromagnetic waves with the shortest wavelengths, which are typically shorter than those of X-rays.
Waves with a higher frequency have more energy. Gamma rays have the shortest wavelengths and highest frequencies of any electromagnetic wave. Gamma rays have more energy than any other electromagnetic wave due to their extremely high frequencies.
To know more about gamma rays follow
https://brainly.com/question/22166705
#SPJ6
What is surface tension
Answer:
Surface tension is, the surface where the water meets the air, water molecules cling even more tightly to each other.
Extra CreditA particle is directed along the axis of the instrument in the gure. Aparallel plate capacitor sets up an electric eld E, which is orientedperpendicular to a uniform magnetic eld B. If the plates are separated byd= 2:0 mm and the value of the magnetic eld isB= 0:60T. Calculatethe potential di erence, between the capacitor plates, required to allow aparticle
This question is incomplete, the complete question is;
A particle is directed along the axis of the instrument in the figure below. A parallel plate capacitor sets up an electric field E, which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by d = 2.0 mm and the value of the magnetic field is B = 0.60T.
Calculate the potential difference, between the capacitor plates, required to allow a particle with speed v = 5.0 × 10⁵ m/s to pass straight through without deflection.
Hint : ΔV = Ed
Answer:
the required potential difference, between the capacitor plates is 600 V
Explanation:
Given the data in the question;
B = 0.60 T
d = 2.0 mm = 0.002 m
v = 5.0 × 10⁵ m/s.
since particle pass straight through without deflection.
F[tex]_{net[/tex] = 0
so, F[tex]_E[/tex] = F[tex]_B[/tex]
qE = qvB
divide both sides by q
E = vB
we substitute
E = (5.0 × 10⁵) × 0.6
E = 300000 N/C
given that; potential difference ΔV = Ed
we substitute
ΔV = 300000 × 0.002
ΔV = 600 V
Therefore, the required potential difference, between the capacitor plates is 600 V
1.What is the Kinetic energy of a 3 kg object moving at 4 m/s?
Plz help I’ll give points
Answer:
24 J
Explanation:
[tex]K = \frac{1}{2} mv^{2} = \frac{1}{2} (3kg)(4m/s)^{2} = 24 J[/tex]
stored energy is _________ ___________
kinetic energy
energy in motion
potential energy
Answer:
Potential energy
Explanation:
Potential energy is stored energy
A ray diagram is shown. A tree acts as the object further than 2 F away from a biconvex lens. The distance between 2 F and the object is labeled W. The distance between F and 2 F is labeled X. There I a light ray parallel to the principal axis is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect a point below the principle axis between F and 2 F on the image side of the lens and is closer to the principal axis than the object is tall. The intersect point is labeled Z and the distance between F and 2 F on the image side of the lens is labeled Y. Which letter represents the location of the image produced by the lens? W X Y Z
Answer:
Z
Explanation:
correct on edge
Answer: Z
good luck!
HURRY IM TIMED
How can you make people feel inspired?
By leading them on an emotional journey through various states to inspiration
By talking about something that interests you
By proving yourself to be a trustworthy speaker
By making them laugh and feel comfortable
Answer:
By talking about something that interesto you’
sorry if wrong
Explanation:
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.00 s for the boat to travel from its highest point to its lowest, a total distance of 0.600 m . The fisherman sees that the wave crests are spaced a horizontal distance of 6.40 m apart.
Required:
a. How fast are the waves traveling?
b. What is the amplitude of each wave?
c. If the total vertical distance traveled by the boat were 0.30 m but the other data remained the same, how would the answers to parts (a) and (b) be affected?
Answer:
a. Speed = 1.6 m/s
b. Amplitude = 0.3 m
c. Speed = 1.6 m/s
Amplitude = 0.15 m
Explanation:
a.
The frequency of the wave must be equal to the reciprocal of the time taken by the boat to move from the highest point to the highest point again. This time will be twice the value of the time taken to travel from the highest point to the lowest point:
frequency = [tex]\frac{1}{2(2\ s)}[/tex] = 0.25 Hz
The wavelength of the wave is the distance between consecutive crests of wave. Therefore,
Wavelength = 6.4 m
Now, the speed of the wave is given as:
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
Speed = 1.6 m/s
b.
Amplitude is the distance between the mean position of the wave and the extreme position. Hence, it will be half the distance between the highest and lowest point:
Amplitude = (0.5)(0.6 m)
Amplitude = 0.3 m
c.
frequency = [tex]\frac{1}{2(2\ s)}[/tex] = 0.25 Hz
Speed = (Frequency)(Wavelength)
Speed = (0.25 Hz)(6.4 m)
Speed = 1.6 m/s
Amplitude = (0.5)(0.3 m)
Amplitude = 0.15 m